198 LIBEB, II. SECTIO I.
Hinc prodeunt
Tempora correcta
Intervalla
Logarithm!
Nov. 5,564852
30,901434
39,873966
1,4899785
36,466286
1,6006894
76,340252
unde derivantur logarithm! correcti quantitatum 6, 6" resp. 9,8362708 atque
9,7255599. Incipiendo dein calculum elementorum ex /, r", 2/, 0, prodit
logY] = 0,0031921 , sicuti ex r, /, 26'' obtinemus logy]"= 0,0017300.
Hinc colligitur logP' = 9,8907512, log$' = 9,5712864, adeoque
X = + 0,0014736, Y= -j- 0,0094574
Praecipua momenta hypothesis secundae, in qua statuimus
x = logP = 9,8907512
y = log§ = 9,5712864
haec sunt:
o> —(— a . . . .
20° 8' 0"87
log Q c sin to .
0,0373071
z
logr'
0,35071 10
c
.... 195 16 59,90
C"
logr
0,3630642
logr"
\{u -\-u) . .
.... 267 6 10,75
i (u"—u) .
. . . —43 39 4,00
2/
2/
13 1 54,65
2 f
9 30 14,38
Differentia 0 3 4 inter ‘if et ita distribuenda est, ut statuatur 2f=
13° 1 54 "45, 2f"= 9°30'14"24.