Full text: Theoria combinationis observationum erroribus minimis obnoxiae

THEORIA COMB1N. OBSERV. ERRORIBUS MIN1M. OBNOXIAE. 
17 
V' 
m m — kk 
fi k deflgnat partem conflantem ipfam atque m errorem medium 
obieruationum parte conflante nondum purgatarum, flue iimpii- 
citer per -v-, ii m denotat errorem medium obieruationum a 
r v a 
parte conflante liberatarum (v. art. g.)* 
16. 
In artt. 12 — 15. fuppofuimus, errores x, x\ x" etc. ad idem 
obieruationum genus pertinere, ita vt Ungulorum probabilitates 
per eandem functionem exprimantur. Sed iponte patet, difqui- 
iltionem generalem artt. 12 — 14 aeque Facile ad caium generalio 
rem extendi, vbi probabilitates errorum x, x\ x" etc, per fun 
ctiones diuerfas (p.r, §)'x\ (p"x" etc. exprimantur|, i. e. vbi erro 
res illi pertineant ad obieruationes praeciiionis feu incertitudinis 
diuerfae. Supponamus, x efie errorem obieruationis talis, cuius 
error medius metuendus fit zmn j nec non x\ x' etc. elie errores 
aliarum obieruationum, quarum errores medii metuendi refp. fint 
rn\ in'etc. Tunc valor medius aggregati xx-\- xx + x" x" -J- etc. 
erit m m 4- m in + m"m" -f- etc. lam ii aliunde conflat, quantita 
tes m, m, m" etc. efie in ratione data, puta numeris i, //, y, 1 ' etc, 
refp. proportionales, valor medius expreflionis 
xx -f- x x -\-x x -f- etc. 
1 -f" f* № + P f* + etC * 
erit — rnm. Si vero valorem eiusdem expreflionis determinatum, 
prout fors errores x, x\ x" etc. offert, ipfi nim aequalem poni 
mus, error medius, cui haec determinatio obnoxia manet, fimili 
ratione vt in art. praec. inuenitur 
v/"(n 4 -f- r /4 4- n "4 4. e tc. — m 4 — m' 4 — 7«" 4 — etc.) 
*“ J. -f- fjL fj.' -f f*" f*" + €tC ‘ 
vbi n, n etc. refpectu obieruationum, ad quas pertinent errores 
C
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.