Full text: Theoria combinationis observationum erroribus minimis obnoxiae

22 
CAROL. FRIDERIC. GAUSS 
ductaque negligere liceat. Hinc primo fequilur, quoniam obfer- 
vaticiunn errores a partibus cenitantibus liberi fupponuntur, va- 
lorem medium ipfms E e fle — o. Porro error medius in valore 
ipiius U metuendus, ei it radix quadrata e valore medio ipiius 
EE, flue M M erit valor medius aggregati 
XXee-f-XXee-fiX X e e ~{~ ctc. -j- 2 XX* e e -J- 2 A. X" e t 
-j- 2 X A te -f- etc. 
At valor medius ipiius XXee fit XXmm, valor medius ipiius 
X' X' e' e fit ~ X X m m etc.; denique valores medii productorum 
&XX'ee' etc. omnes fiunt —o Hinc itaque colligimus 
M — V' ( X X m rn -f- X' X' m m' X" X" m" m ’ -f- etc.) 
Huic folutioni quasdam annotationes adiicere conueniet. 
I. Quatenus fpectando obferuationum errores tanqnam quan 
titates primi ordinis, quantitates ordinum ahiorum negliguntur, 
in formula nofira pro X, X' X" etc. etiam valores eos quolien- 
d U , . 
tium -r~7? etc * adoptare licebit, qui prodeunt e valoribus obfer- 
d y 
vatis quantitatum V, V\ V" etc. Quoties U eft functio linearis, 
nianifefio nulla prorfus erit differentia. 
II. Si loco errorum mediorum obferuationum, harum pon 
dera introducere malumus, fint haec, fecundum vnilatem arbi-' 
trarlam, refp p, p, p etc., atque P pondus determinationis va 
leris i piius U e valoribus obferuatis quantitatum V, V" etc. 
prodeuntis. Ua habebimus 
'XX xT rr 
1_ — _j 77 _J_ elc< 
p p p 
III. Si T eft functio alia data quantitatum V, V, V" etc. 
atque, pro harum valoribus veris, 
d T d T , d T 
— f — k etc.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.