Full text: Theoria combinationis observationum erroribus minimis obnoxiae

CAROL. FRIDERIC GAUSS 
36 
— e' V p" etc, Hinc valor verus ipiius x erit = A — a e V' p 
— a e \ip' —a e' V' p" etc,, iiue error valoris ipiius x, in de 
terminatione maxime idonea commiiTus, quem per Ex denotare 
conuenit, 
— aeV' p ct e V' p + ct’e ' V' p" -j- etc. 
Perinde error valoris ipiius y in determinatione maxime idonea 
commiiTus, quem per Ey denotabimus, erit 
= /3 e V p e p -f- &' e " v'* p" + etc. 
Valor medius quadrati (Ex) 2 inuenitur = rn m p ( acc -{- a ct 
ct'ct' etc. ) = mmp [a a] ; valor medius quadrati (Ey) 2 per 
inde zzinm p[@ & j etc., vt iam fupra docuimus. lam vero etiam 
valorem medium producti Ex.Ey allignare licet, quippe qui in 
venitur 
~mmp(a(3 -f- ct \3' + a" ff' -j- etc.) —inmp[al3]. 
Concinne haec ita quoque exprimi poliunt. Valores medii qua 
dratorum (£x) 2 , (Ey) 2 etc. relp. aequales funt productis ex 
| mmp in quotientes differenlialium partialium fecundi ordinis 
d d £2 d d 12 
d£ 2 &t\ 2 
valorque medius producti talis, vt Ex,Ey y aequalis eit producto 
. dd!2 
ex ^innip in quotientem dinerentialem , quatenus qui 
dem 12 tamquam functio indeterminatarum ¿, q 9 £ etc, con- 
ilderatur. 
29. 
Deiignet t functionem datam linearem quantitatum x, y, z etc. 
puta fit 
tzzfx-\- gy + hz + etc * + 
Valor ipiius £, e valoribus maxime plaufibilibus ipfarum x, y t z etc. 
prodiens hinc erit — f A g B hC etc -f- k , quem pes K 
denotabimus. Oui Ii tamquam valor verus ipiius t adoptatur, er 
ror committitur, qui erit 
~ E x g E y -j- hEz --f- etc.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.