46
CAROL. FRiDERIC. GAUSS
v zz o , v rr o , v' — o etc.; aggregatum indefinitum v v -f- v v
-\-v'v" etc. =£2; porro vt £ etc. fint quotientes diiFe-
rentiales partiales
dii d £2 d Qj
i dx 1 s dy * 2 dz
denique vt ex eliminatione ind finita fequatur
x~ A fi[ ct jS ] 3? [ ct y ] £ 4" etc * )
y = B 4- F<*&]£ 4-1/33] 37 4- [3 c / j £ + etc. | (i)
~ ~ c 4- [ay}£ 4- ['3 y] st 4- [yy]^+ etc. ^
lam fnpponamus, accedere aequationem nonam v*~o (proxime
veram, et cuius pondus ~ i), et inquiramus, quantas mutationes
hinc nacturi fint tum valores incognitarum maxime plaufibiles
A, B, C etc., tum coeflicientes [a a], [ct&] etc.
Statuamus ii 4“ v * v * — ii*.
dd* _ dii* da*
c d x ^ ’ 2 d y *1 ’ 2 d z
fupponamusque, hinc per eliminationem fequi
x — A* 4- [ a ct* ] 4- [ CC 3* ] *T + [ « V*] elc .
Denique fit
u* rr f x 4- gy 4-^24- etc. 4- k
prodeat inde, fubflitutis pro x, y, z etc, valoribus ex (I),
v* = Fg4- 4- i/^4- etc. 4- K
ftatuaturque F/4- 4~ Fi/i 4- etc. rz cj.
=r etc.
Manifefio K etit valor maxime plaufibilis functionis d*, qua
tenus ex aequationibus primitiuis fequitur, fine refpectu valoris o
quem obferuatio acceiToria praebuit, atque pondus ifiius de
terminationis.
lam habemus
£* =£ + f v *> »I* = tf4- £*>*» =
adeoque