436
EUCLID
laquelle on demande de démontrer qu’une chose ou plusieurs
choses sont données, qui, ainsi que l’une quelconque d’une
infinité d’autres choses non données, mais dont chacune est
avec des choses données dans une même relation, ont une
propriété commune, décrite dans la proposition,’ We need
not follow Simson’s English or Scottish successors, Lawson
(1777), Playfair (1794), W. Wallace (1798), Lord Brougham
(1798), in their further speculations, nor the controversies
between the Frenchmen, A. J. H. Vincent and P. Breton (de
Champ), nor the latter’s claim to priority as against Chasles ;
the work of Chasles himself (Les trois livres des Pariâmes
d’Euclide rétablis . . . Paris, 1860) alone needs to be men
tioned. Chasles adopted the definition of a porism given by
Simson, but showed how it could be expressed in a different
form. ‘ Porisms are incomplete theorems which express
certain relations existing between things variable in accord
ance with a common law, relations which are indicated in
the enunciation of the porism, but which need to be completed
by determining the magnitude or position of certain things
which are the consequences of the hypotheses and which
would be determined in the enunciation of a theorem properly
so called or a complete theorem.’ Chasles succeeded in eluci
dating the connexion between a porism and a locus as de
scribed by Pappus, though he gave an inexact translation of
the actual words of Pappus : ‘ Ce qui constitue le porisme est
ce qui manque à l’hypothèse d’un théorème local (en d’autres
termes, le porisme est inférieur, par l’hypothèse, au théorème
local ; c’est à dire que quand quelques parties d’une proposi
tion locale n’ont pas dans l’énoncé la détermination qui leur
est propre, cette proposition cesse d’être regardée comme un
théorème et devient un porisme) ’ ; here the words italicized
are not quite what Pappus said, viz. that ‘a porism is that
which falls short of a locus-theorem in respect of its hypo
thesis ’, but the explanation in brackets is correct enough if
we substitute £ in respect of ’ for £ par 5 ( £ by ’). The work of
Chasles is historically important because it was in the course
of his researches on this subject that he was led to the idea of
anharmonic ratios ; and he was probably right in thinking
that the Porisms were propositions belonging to the modern
theory of transversals and to projective geometry. But, as a