Full text: Lehrbegriff der Optik und Perspectiv ([Theil 7])

XVI. Abschnitt. 
525 
hier wird y=o, also und mau erhalt 
¿ —^¿-sin 2^. Eine grade Linie BC also in der 100 
Entfernung k= i^sin 2^— EF mit dem Durch- Fig. 
meffer FC parallel gezogen, ist ein Hauptdurchmesser 
der Parabel, und alle solche Linien sind als Sehnen 
anzusehen, die durch den Mittelpunct der Parabel 
laufen (264.$.). Weil für k nur ein Werth gefun 
den wird, so hat die Parabel nur einen Hauptdurch 
messer, unter den Linien, die mit FC parallel laufen. 
Dies hebt indessen die Allgemeinheit des festgesetzten 
Satzes selbst nicht auf, weil unter den auf BC senk 
rechten Sehnen ebenfalls diejenige, welche durch den 
unendlich entfernten Mittelpunct C gehen würde, 
als eine solche anzusehen ist, die alle mit BC paral- 
leie Sehnen halbirt. Eben das ergiebt die gefun- 
m 3, fin 2£* 
dene Gleichung tang2y = — —-, wor- 
1 + m 2 COl 2£ 
aus tangiy—o wird, m 2 — o gefetzt. Aber ei 
nes Winkels, dessen Tangente — o ist, Hälfte kann 
sowohl — o, als auch — 90° seyn; wie denn auch 
der eine Werth von tang</ — 0, der andre unend 
lich groß wird. 
Man kann die erwiesene Eigenschaft der Pa 
rabel aus der für sie gehörigen Gleichung auch fol 
gendergestalt herleiten. Man setze Mq auf EC senk 
recht, ziehe BC mit EC parallel, so wird Mq auch 
BC in (^schneiden. Ist nun EP = #, PM—y, 
MPC=£, so hat man jy=gx. Man lasse auch EF 
auf BC senkrecht fallen, setze EF—Qq~k, FQ— 
QM=5, so wird z—k+y fin£, und ¿=Eg=.v-f 
/cos£, Mithin/---- ^ UN.d x=t~-ycotir
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.