CONTENTS OF VOL II
XU. ARISTARCHUS OF SAMOS pages 1-15
XIII. ARCHIMEDES . 16-109
Traditions
(«) Astronomy 17-18
(d) Mechanics 18
Summary of main achievements 19-20
Character of treatises 20-22
List of works still extant 22-23
Traces of lost works ... ■ • • • • 23-25
The text of Archimedes ....... 25-27
Contents of The Method ....... 27-34
On the Sphere and Cylinder, I, II . . . . 84-50
Cubic equation arising out of II. 4 .... 43-46
(i) Archimedes’s own solution 45-46
(ii) Dionysodorus’s solution ..... 46
(iii) Diocles’s solution of original problem . . 47-49
Measurement of a Circle ....... 50-56
On fynoids and Spheroids ...... 56-64
On Spirals ......... 64-75
On Plane Equilibriums, I, II 75-81
The Sand-reckoner (Psammites or Arenarius) . . . 81-85
The Quadrature of the Parabola ..... 85-91
On Floating Bodies, I, II . . . . . . . 91-97
The problem of the crown ...... 92-94
Other, works
(a) The Cattle-Problem ...... 97-98
(3) On semi-regular polyhedra ..... 98-101
(y) The Liber Assumptorum ..... 101-103
(8) Formula for area of triangle . . . . 103
Eratosthenes 104-109
Measurement of the Earth 106-108
XIV. CONIC SECTIONS. APOLLONIUS OF PERGA . .110-196
A. History of Conics up to Apollonius . . 110-126
Discovery of the conic sections by Menaechmus . 110-111
Menaechmus’s probable procedure . . . 111-116
Works by Aristaeus and Euclid , . . 116-117
‘ Solid loci ’ and ‘ solid problems ’ . . . 117-118
Aristaeus’s Solid Loci ...... 118-119
Focus-directrix property known to Euclid . . 119
Proof from Pappus ...... 120-121
Propositions included in Euclid’s Conics . . 121-122
Conic sections in Archimedes .... 122-126