Ei
■
3.
8 : 43
; 19.
are proved.
LP.
ARISTARCHUS OF SAMOS 13
Hence ON: LC = ON 2 : NL 2
> 89 2 : 45 2 ;
therefore ON:LP > 7921 :4050
> 88 : 45 ^ says Aristarchus.
[if im be developed as a continued fraction, we easily
obtain 1 + " \, which is in fact • J
(by Prop. 12)
— - j wnicn is in tact _
1+21+2 45
(2) ON < 2 (diam, of moon).
But (diam. of moon) < Ag (diam. of sun); (Prop. 7)
therefore ON < ^ (diam. of sun).
Again ON: (diam. of moon) > 88 : 45, from above,
and (diam. of moon): (diam. of sun) > 1:20; (Prop. 7)
therefore, ex aequali,
ON: (diam. of sun) > 88:900
> 22 : 225.
(3) Since the same cone comprehends the sun and the moon,
the triangle BJJV (Fig. 1) and the triangle BLN (Fig. 2) are
similar, and
LN-.LP = UV: (diam. of sun)
= WU: UA
= UA:AS
< UA: AY,
But LN:LP > 89:90; (Prop. 12)
therefore, a fortiori, UA: AY > 89:90.
And UA:AY =2UA:YZ
= (diam. of sun): YZ.
But ON: (diam. of sun) > 22:225; (Prop. 13)
therefore, ex aequali,
• ON: YZ > 89 X 22 : 90 x 225
> 979 :10125.