Appareille.
85
Aptom.
in Länge
geht her-
der 3 Be-
ann, weil
]/C eine
Linie 6
über die
: dafs fol-
also das
nfferenz der
angefügten,
Potenziren
jänge com-
heiist, dafs
die Seite
Quadrate
commeu-
e ist die
mensurabel,
Potenzirung
e ist weder
ganze (y'ß)
her
soll die
te um das
о m m e u -
îe ist die
rabel, also
le ist die
miensurabel,
e ist weder
in Länge
yC und
Gerätli; es
zeug oder
ein nicht
ist jeder
Ganzen zu-
örpern, mit
Thätigkeit
A. unter-
lafs ersterer
oder wenn
nische noch
bürgerlich
hrend letz-
uf dieselbe
rden, selbst
zur Thätigkeit kommt, und zu bürgerlich
nutzbarem Zweck Körper mechanisch oder
deren Ort ändert. Aus diesem Grunde
sollten die sogenannten astronomischen
Maschinen, welche die Bewegung der
Planeten um die Sonne figürlich dar
stellen, astr. Apparate genannt werden.
Zirkel, Kette, Stäbe sind Mefs-Instru
mente ; Mefstische, Astrolabien,Theodoliten
sind Mefs-Apparate. Barometer, Thermo
meter, Lupen sind Beobachtungs-Instru
mente ; Calorimeter, Mikroskope Beobach
tungs-Apparate. Die Adwood’sche Fall
maschine würde geeigneter Fall-Appa
rat genannt werden.
2) Eine Summe von Apparaten und
Instrumenten, die zur praktischen Aus
übung einer Wissenschaft gehören. Man
hat mathematische, physikalische, chemi-
kalische, astronomische, chirurgische etc.
Apparate.
Appareille, Auffahrt, Rampe, bei
einer Brustwehr die von dem Bau-Hori-
298
Der wirkliche Werth ist,
Der Näherungswerth \
Die Annäherung ist geschehen auf . .
Approximationsformel, Näherungsfor
mel, eine Formel, mit deren Anwendung
man dem wirklichen Werth einer Gröfse
nur nahe kommt, ohne ihn ganz zu er
reichen. Z. B. die Formel für den Inhalt
eines gleichschenkligen Dreiecks von der
Grundlinie a und dem Schenkel 6 ist
I~{a]/(2b + a)(2b-a) Ist nnn a gegen
zont nach der Geschützbank (Bar
bette) schräg aufsteigende Fläche. Sie
hat mindestens 8 Fufs, höchstens in
schlechtem Boden 12 Fufs Breite und eine
Dossirung von mindestens der 6 fachen
Höhe zur Anlage (s. d.)
Applicate s. v. w. Ordinate (s. u.
Abscisse), jedoch nur für Curven, aber
für jede beliebige Abscissenlinie und un
ter beliebigem Winkel mit derselben.
Die Alten nannten (nach Apollonius)
A. nur diejenigen Ordinaten einer Curve,
welche 4= mit einander zu beiden Seiten
der Abscisse gleich grofs werden, also
für Kegelschnitte, wenn die Abscisse ein
Durchmesser, und für rechtwinklige A.,
wenn die Abscisse die Axe des Kegel
schnitts ist.
Approximation s. v. w. Näherung, das
Nahekommen an eine bestimmte Gröfse.
298
Einem Bruch =—-nähert man sich, wenn
o9 9
man für denselben f setzt.
Decimalbruch ausgedrückt, = 0,747686 ...
0,750000
0,002313...
b nur klein, so kann man das Dreieck
als einen Kreisausschnitt betrachten, dessen
Bogen die Länge a und dessen Radius
= 6 ist, und man hat I — \ab. Diese
Formel wäre dann die Näherungsformel
für den Inhalt des Dreiecks. Für 6 = 30
Fufs, a = 8 Fufs hat man
1= 81/68.52 = 118,9335 □'
= ^8*30 = 120,0000 □’
näherungsweise
Die Annäherung ist geschehen auf 1,0665 □'
Approximations - Werth, Näherungs-
werth, der durch Annäherung gewonnene
Werth anstatt des wirklichen Werths ei
ner Gröfse (s. d. vor. u. d. folg. Art.)
Approximativ (näherungsweise) findet
man nur den Werth aller Irrationalzahlen,
als у2, |/4 u. s. w., ferner die Werthe
der transcendenten Zahlen, als aller
briggischen Logarithmen mit Ausnahme
der für die dekadischen Zahlen; die der
trigonometrischen Zahlen mit wenigen
Ausnahmen. Durch die Auflösung deren
Werthe in Decimalbrüche oder in Ketten
brüche kann man jedoch einer solchen
Zahl beliebig nahe kommen.
Z. B. die Ludolph’sche Zahl, das Yer-
hältnifs der Peripherie eines Kreises ist
(Vega logarithm. Tafeln) auf 140 Decimal-
stellen berechnet. Auf die ersten 8 De-
cimalstellen ist dieselbe 3,14159265 .. .
Ein sehr brauchbarer Näherungswerth
derselben ist 3,1416; durch Kettenbruch
erhält man:
22
— = 3,14258 .. .; zu grofs um 0,00099
333
—— = 3,141509; zu klein um 0,000083
10b
355
113
= 3,1415929; zu grofs um 0,000003
also eine für die Praxis sehr bedeutende
Annäherung u. s. w.
Appuls, der Anstofs zum Durchgang
eines Gestirns an ein vor dem Beobach
tungs-Instrument angebrachtes Loth.
Apsiden, Schreibart auch für Absiden
(s. d.)
Aptom. Das in der Mitte auf der
Polygonseite einer bastionirten Verschan-
zung erachtete Perpendikel, nach welcher