; avaient donné
)mbée en oubli
ble découverte
i la théorie des
ur résoudre les
blême des tan-
une droite qui
cessait en effet
dut en imaginer
nd une sécante
itersection avec
'section se rap-
la tangente à la
mées sont x, y.
second point de
équation
nier, h tend vers
ingente,
des quadratures,
la parabole, Taxe
INTRODUCTION. 3
des x et une droite x = a, parallèle aux y. Divisons la dis
tance OA — a en n parties égales {Jig- i), et soit h = - la
longueur de chacune d’elles. Traçons les ordonnées corres
pondantes, et par les points où elles rencontrent la courbe
menons des parallèles à l’axe des x. L’aire cherchée S sera ainsi
décomposée en une somme de trapèzes curvilignes dont cha
cun sera lui-même composé d’un rectangle et d’un txùangle
curviligne.
Fig, i.
L’aire de chaque rectangle est facile à évaluer. Soit BCDE
le {m -f- i ,emc ) d’entre eux. On aura
et enfin