Full text: On the value of annuities and reversionary payments, with numerous tables (Vol. 1)

30 ON THE VALUE OF ANNUITIES. 
Nominal 
rate of 
Interest. 
Payable. 
Present 
value 
of ¿£1 in 
one year. 
Logarithm of 
such present 
value. 
Nominal 
rate of 
Interest. 
Payable. 
Present 
value 
of £\ in 
one year. 
Logarithm of 
such present 
value. 
y 
.980392 
T. 9913998282 
y 
.952381 
T.9788107009 
2 
h 
.980296 
T. 9913572524 
5 
h 
.951814 
1.9785522692 
per cent 
? 
.980247 
1.9913357530 
per cent 
y 
.951524 
T.9784198725 
m 
.980199 
T.9913141104 
m 
.951230 
T.9782852759 
y 
.975610 
Î. 9892761346 
y 
.943396 
T. 9746941347 
â| 
h 
.975461 
f. 9892099362 
6 
h 
.942596 
T. 9743255506 
per cent 
y 
.975386 
1.9891764265 
per cent 
y 
.942184 
T.9741358310 
m 
.975310 
r.9891426380 
m 
.941764 
T. 9739423311 
y 
.970874 
1~. 9871627753 
y 
.934579 
T.9706162223 
3 
h 
.970662 
T.9870679155 
7 
h 
.933511 
T. 9701193004 
per cent 
y 
.970554 
l". 9870197807 
per cent 
y 
.932958 
F. 9698623284 
m 
.970445 
IT. 9869711655 
m 
.932394 
T.9695993863 
y 
.966184 
r. 9850596502 
y 
.925926 
1.9665762445 
QJL 
0t 2 
k 
.965898 
T. 9849311642 
8 
h 
.924556 
T.9659333214 
per cent 
y 
.965752 
T. 9848658091 
per cent 
y 
.923845 
T.9655993130 
m 
.965605 
T. 9847996931 
m 
.923116 
T.9652564414 
y 
.961538 
T.9829666607 
y 
.917431 
T. 9625735021 
4 
h 
.961169 
1.9827996565 
9 
h 
.915730 
T.9617674191 
percent 
y 
.960980 
1.9827145049 
per cent 
y 
.914843 
1.9613467333 
m 
.960789 
1.9826282207 
m 
.913931 
T. 9609134966 
y 
.956938 
1.9808837096 
y 
.909091 
1.9586073148 
h 
.956474 
n9806733666 
10 
h 
.907029 
1.9576214019 
per cent 
y 
.956238 
1.9805658615 
per cent 
y 
.905950 
1.9571045384 
m 
.955997 
1.9804567483 
m 
.904837 
T.9565705518 
AMOUNT OF ANNUITIES AT COMPOUND INTEREST. 
45. We now proceed to consider cases in Annuities where compound 
interest is allowed. 
Let s = the amount of the annuity, 
a = the annuity, 
n — the number of years, 
i = interest of £l per annum. 
From what has been shewn in treating of the amount of Annuities at 
simple interest, in Art. 14, it appears that the amount of an annuity 
of £l in n years is found by summing the respective amounts of £l at 
the end of 0,1,2, 3,4,5, &c. to (n — 1) years. The amount of £l 
received at the end of 0 years after due, i. e. received immediately when
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.