45
p„=58".tgz„ (Ia>
Für Zenithdistanzen über 70° (Höhen unter 20°) genügen jedoch
die aus (la) berechneten Werte nicht mehr genau den Beobachtungen.
Doch lassen sich Leide, wie die Erfahrung lehrt, in Einklang bringen,
wenn man für solche Höhen die folgende Gleichung nimmt:
p„ = 58".tg(z„-3p„) (Iß)
Die durch vorstehende Gleichungen ausgedrückten Refraktions-
gesetze nennt man die Bradley'sche Regel.
2. Korrektion wegen des Thermometerstands.
Die erwähnten Refraktionen gelten, wie schon bemerkt, nur für
einen bestimmten Thermometerstand, nämlich für 8° R. Beobachtungen
während einer anderen Temperatur bedürfen noch einer weiteren
Korrektion.
Nach den Erfahrungen dehnt sich die den: Nullpunkte der Tem
peratur entsprechende Volumeneinheit Luft, wenn ihre Temperatur
um t° zunimmt, aus in
1-)---^—, so daß für zwei den Temperaturen t
und t, zukommende Dichtigkeiten d und d, die Gleichung besteht:
1 _i —
d r 220
Ist nun d, die der mittleren Temperatur 1, — 8° entsprechende
Dichtigkeit, dann erhält man also die Dichtigkeit d bei jeder andern
Temperatur t aus der Gleichung:
220+ t
228
.d,.
Da nach Theorie und Erfahrung die Refraktion mit der
Dichtigkeit der Lust am Orte der Beobachtung proportional
geht, so darf man dafür auch setzen:
220 -Pt /tt\
P, Wr
P =
228
wo nun also p, die der Temperatur 8° zugehörige mittlere Refrak
tion bedeutet.
Die gemäß dieser Gleichung der mittlern Refraktion hinzuzu-