Full text: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen

530 
Kapitel 23, § 5. Kapitel 24. 
(£№)=(/,, (P 1 O s ) = 2i4, (D,U,)=U, 
wird. Ist etwa 
und ist demnach 
so' wird ansesetzt 
= + i?g), 
U 3 = a(£p + 
& + m = 
QÜP + VQ) = y %j, 
g{Ip -h m) = f jjj- 
Hiernach ist 
V = Q ■ 
während x die Differentialgleichung 
}. d x . d x 
5 d~x + ’i Ty 
0 
Reduction 
auf deu 
zweiten 
Typua. 
erfüllen muss, d. h. als Integral der gewöhnlichen Differentialgleichung 
erster Ordnung: 
dx dy 
I V 
bestimmt wird. 
Wenn zweitens: . 
q, xq, X{x)q 
der Typus der Gruppe ist, in dem allerdings X noch unbekannt ist, 
so wählen wir ü x , ü 2) U 3 irgendwie von einander unabhängig aus 
der vorgelegten Gruppe aus. Es ist dann jedes (TT { TT^ — 0. Wenn 
wieder; 
U l = -f rjq, 
U 2 — Q Ü x , U 3 —; <J U j 
wird, so setzen wir 
Hieraus folgt: 
und 
während sich y aus 
+ w = 
Q&P + 7jq) = x ||, 
+ VQ) = x (ä) §£• 
X = Q 
X(x) = a
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.