und aus diesen beiden Gleichungen und der Formel 25) die
Größen p und q eliminieren, wodurch man erhält:
/3) + ^ ~hy = 0 1 3 5)-
Die Gleichungen 134) und 135) sind die Gleichungen der
im Diagramme Fig. 8 auf Taf. Nr. 43 construierten Linien
systeme.*)
Dieses Diagramm ist ebenso wie die in Fig. 3 und 4 aut
Taf. Nr. 42 dargestellten nur für positive Werte von z con-
struiert; man muss daher, um die negativen Wurzeln der
Gleichung 25) zu erhalten, die positiven Wurzeln der Gleichung
¿r 3 -\-pz — q = o 25')
ermitteln, das heißt jenen Wert von z suchen, welcher in dem
Diagramme den Werten von »/« und »— q« entspricht.
Z. B. die Wurzeln der Gleichung
# 3 — 31 z -f 30 = o
sind: = 1, * 2 = 5, *3 = — 6 -
14. Anwendung der Eliminationsmethode auf Diagramme,
die aus Gruppen von drei sich kreuzenden Liniensystemen
bestehen.
Eine Formel mit vier Argumenten, die paarweise ge
trennt sind,
F ± {a, b) = F 2 [c, d) 136)
kann vermittelst einer Hilfsvariabein u durch ein Diagramm von
der Form Textfigur 32 wie folgt dargestellt werden.
*) Durch den Druck in zwei Farben hat die Genauigkeit dieser Tafel
gelitten.