THE HYPERGEOMETRIC FUNCTION
237
and this establishes 3). Thus passing to the limit x = 1 in 1)
gives
O
7 (« + ¡3 - 7) F(a, /3, 7) + (7 - «) (7 - P)F(a, /3, 7 + 1) = 0,
or
#(«, /8,7) = *'T‘ 0(7 ~ff *(«, A 7 +1)-
7(7-a-/3)
Replacing 7 by 7 + 1, this gives
/3,7+!)
(7 + 1 — «) (7 + 1 — /3)
(7 +1) (7 +1 — « - £)
F(a, /3,y + 2),
etc. Thus in general
F(+ /3, 7) =
(Y-q)(Y + l—<x>--(Y + n —1 —«>(7 —/3)(y + 1 -~/3y--(7 + ft—1—/3)
7(7 + 1)-.. (7 + w-l)(7-«-^)(7-«-^ + l)... (7 —a —£ + w-l)
•F(a, ¡3,7+ n).
Gauss sets now
71 ! 7l x
11 (W ’ X>> = (a:+lXa; + 2)...(a; + n)‘
Hence the above relation becomes
F(nfi 7)
Now
II (n, 7 — 1) n (w, 7 — a — /3 — 1)
n (n, 7 — a — 1) n (n, 7 — ¡3 — 1)
F¡a, /3, 7 + ri).
lim F(a, /3, 7 + 71) = 1.
71=00
For the series
#(«,/3,7)= 1 +^vg + “-« + 1 -/3-ff+ 1 + ...
1*7 1 • 2 • 7 - 7 + I
converges absolutely when 2) holds. Hence
• |/3| , |«|.|« + l|.|/3|.|/3 + l
1 +
1. a
+
1 • 2. a • a + 1
+
(6
a
(8
(9
is convergent. Now each term in 8) is numerically < the corre
sponding term in 9) for any 7 > 6r. Hence 8) converges uni
formly about the point 7 = + 00. We may therefore apply 146, 4.
As each term of 8) has the limit 0 as 7 = + 00, the relation 7)
is established.