Full text: Lectures on the theory of functions of real variables (Volume 2)

THE HYPERGEOMETRIC FUNCTION 
237 
and this establishes 3). Thus passing to the limit x = 1 in 1) 
gives 
O 
7 (« + ¡3 - 7) F(a, /3, 7) + (7 - «) (7 - P)F(a, /3, 7 + 1) = 0, 
or 
#(«, /8,7) = *'T‘ 0(7 ~ff *(«, A 7 +1)- 
7(7-a-/3) 
Replacing 7 by 7 + 1, this gives 
/3,7+!) 
(7 + 1 — «) (7 + 1 — /3) 
(7 +1) (7 +1 — « - £) 
F(a, /3,y + 2), 
etc. Thus in general 
F(+ /3, 7) = 
(Y-q)(Y + l—<x>--(Y + n —1 —«>(7 —/3)(y + 1 -~/3y--(7 + ft—1—/3) 
7(7 + 1)-.. (7 + w-l)(7-«-^)(7-«-^ + l)... (7 —a —£ + w-l) 
•F(a, ¡3,7+ n). 
Gauss sets now 
71 ! 7l x 
11 (W ’ X>> = (a:+lXa; + 2)...(a; + n)‘ 
Hence the above relation becomes 
F(nfi 7) 
Now 
II (n, 7 — 1) n (w, 7 — a — /3 — 1) 
n (n, 7 — a — 1) n (n, 7 — ¡3 — 1) 
F¡a, /3, 7 + ri). 
lim F(a, /3, 7 + 71) = 1. 
71=00 
For the series 
#(«,/3,7)= 1 +^vg + “-« + 1 -/3-ff+ 1 + ... 
1*7 1 • 2 • 7 - 7 + I 
converges absolutely when 2) holds. Hence 
• |/3| , |«|.|« + l|.|/3|.|/3 + l 
1 + 
1. a 
+ 
1 • 2. a • a + 1 
+ 
(6 
a 
(8 
(9 
is convergent. Now each term in 8) is numerically < the corre 
sponding term in 9) for any 7 > 6r. Hence 8) converges uni 
formly about the point 7 = + 00. We may therefore apply 146, 4. 
As each term of 8) has the limit 0 as 7 = + 00, the relation 7) 
is established.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.