DERIVATES
495
Example 1. f (ж) — x sin
x Ф 0 in (— 1, 1)
Here for x = 0,
Hence
Example 2.
Here for
Hence
Example 3.
Here
= 0 ,
n • 1
h sm-
Af = A
Ax h
«/'(0) = +1 ,
Lf\ 0)= + l ,
7'(°)= + i ,
= o.
= sin T .
h
Bfc o) = -i,
Lf\ 0)=-l,
/'(0)= —I-
/(ж) = ж* sin - , x Ф 0 in ( — 1, 1)
X
x — 0.
. 1
л - Sin 7
A/ = A.
Ax
= 0
ж = 0
Д/Ч°)= + 20
Д/'(0)= + оо
7'(0) = + oo
/(ж) = ж sin -
X
= ж 3 sm
Л 3
^/(°)= - ° 0 »
i/'(0)=- <»,
/'(0)= - GO.
for 0 < ж < 1
, for — 1 < ж < 0
= 0 ,
Д/'(0)= + 1
Г/'(0)= + оо
/'(0)= + c©
ж
for ж = 0.
Д/'(0) = -1,
£/'( 0)=-оо,
/'(0)=-оо.
500. 1. Before taking up the general theory it will be well
for the reader to have a few examples in mind to show him how
complicated matters may get. In I, 367 seqwe have exhibited
functions which oscillate infinitely often about the points of a set