CONTENTS
XV
3
PAGE
342
343
345
348
349
352
353
356
359
360
363
366
370
371
371
376
377
378
379
381
382
383
386
389
391
394
397
399
400
402
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
1.
2.
3.
4.
5.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
CHAPTER XVII
THE CALCULUS OF VARIATIONS AND HAMILTON’S PRINCIPLE
PAGE
b
Maximum or Minimum of J* F(x, y, y')dx . . ■ .
a
Euler’s Equation
Minimum Surface of Revolution
The Brachystochrone
Definition of the Variations
Euler’s Equation for Multiple Integrals
Laplace’s Equation in Curvilinear Coordinates. Dirichlet’s Prin
ciple .....•••••••
Isoperimetric Problems
Variable End Points
Parametric Form and the so-called “Variation of the Inde
pendent Variable
Hamilton’s Principle .........
Least Action ...........
406
407
411
412
414
415
419
422
427
430
434
442
CHAPTER XVIII
THERMODYNAMICS. ENTROPY
Reversible Changes and the (v, p) - Diagram ..... 449
The First Law of Thermodynamics 452
Differentials ........... 453
In Particular, the Differential dQ . . . . . . . 455
The Entropy of a Perfect Gas ....... 457
CHAPTER XIX
DEFINITE INTEGRALS AND THE GAMMA FUNCTION
The Definite Integral as a Function of a Parameter. Leibniz’s
Rule 460
Several Parameters and Multiple Integrals ..... 463
Improper Integrals.......... 464
Tests for Convergence ......... 466
Absolutely Convergent Integrals ....... 468
The Limit Tests .......... 469
Alternating Integrals ......... 472
Infinite Integrands .......... 474
Continuation ........... 477
Discontinuities within the Interval ...... 479
The Gamma Function ......... 480
The Beta Function ......... 484
Improper Double Integrals 485
Evaluation of Definite Integrals by Differentiation . . . 486
Other Methods 488