Full text: Briefwechsel zwischen Leibniz, Jacob Bernoulli, Johann Bernoulli und Nicolaus Bernoulli (1. Abtheilung, Band 3)

43 
quae si nominentur y et z, habebitur 
4 x m 4 x 
pro 1. casu yy + z z =—_ e t yy — zz 
m m 
4 x r 4x^ r 
pro 2. casu yy-fzz = — et yy—zz = , 
rr mm 
adeoque yy + zz 
_ 2 Vyy— zz 
m 
adeoque yy + zz 
2>fyy—zz' 
Hinc Regula: Si Fractio differentialis talis sit, vel ad talem 
reduci possit, ut numerator sit rationalis, denominator radix qua 
drata differentiae quantitatis cognitae ,et potestatis indeterminatae 
x, cujus index quadruplus sit indicis ejusdem, unitate aucti in 
numeratore, erit ejus integrale, portio Curvae Algebraicae. 
Exempl. 
aadx 
1. 
2. 
7=——-, quia 4 = 0 + 1,4 = 2m, erit m = 2, et yy + zz 
Va 4 —x 4 
= a Vyy 
zz = x x. 
'a a d x 
Vx 4 —a 
= , quia 4 = 0+1,4 = —2r, eritr=—2, et yy + zz 
— a Vyy — zz = 
X X 
adxy’a . adx J* a 
3. - , quia -=== 
V aax — x 3 v aax — x ’ 
dx 
vi 
-, ubi 2 
4 + 1,4 
V a a — xx 
= 2m, adeoque m = l, erit yy+zz —2 aVyy—zz=4ax. 
x xdx 
Vili. Constructio Elasticae, cujus aequatio dy: 
Va 
~ . / aadx 
Quia / 7 -- 
est portio curvae Lemniscatae, ut osten- 
3. 3 (I X I x j dx 
sum, videatur num integrari possit hoc modo: 
aa + xx dx /aa + xx f \ 
Va 4 —x 4 V aa—xx tX ~V 
dratum resolvitur in partes ——~ dx« 
aa — xx + 2x x 
aa — xx 
aa — xx 
dx«, et 
dx, cujus qua- 
2xxdx , 
aa— x x
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.