Dritter Abschnitt.
Die Kombinationslehre.
a) Uber Permutatio »ien. (§. i»s. der Alg.)
1) eOon derKomplexion ,2845 sollen alle möglichen Versetzun
gen angegeben werden. .
2) Man soll von der Komplexion 6748 alle möglichen Permuta-
rionen bilden.
3) Von der Komplexion »»»244 sollen alle Permutationsformen
angegeben werden.
4) Alle möglichen Versetzungen von derKomplexion aacbbd
zu bilden.
5) Wie oft lassen sich die Faktoren des Produktes
a^bo^de — aaabccde
versetzen?
6) Wie oft können acht Personen, die in einem Kreise sitzen, ihre
Platze wechseln?
7) Wie oft lassen sich zehn Kugeln in eine andere Ordnung bringen ?
8) Wie viele Verbindungen sind bey jenen zehn Kugeln möglich,
wenn unter denselben drey blau, vier grün, zwey roth und eine
schwarz ist?
9) Wie viele ganze zehnzifferige Zahlen gibt es, deren Ziffern
sämmtlich von einander verschieden sind?
10) Wie viele Verbindungen können aus der Komplexion a 3 b 4 c 3 d
gebildet werden?
11) Ein Student hat 12 Bande, worunter das aus fünf Bän
den bestehende Lexikon von Heinsius sich befindet; wie oft kann die
ser Student seine Bücher versetzen, wenn Heinsius stets den ersten
Platz einnehmen soll?
12) Wie oft kann eben dieser Student seine zwölf Bücher ver
setzen, wenn die fünf Bände des Heinsius immer in derselben Ord
nung neben einander stehen sollen?