Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

106 
ON LINEAR TRANSFORMATIONS. 
[14 
Aoo = 
A 2 , 
Aio = 
- 
2 A 2 , 
A20 = 
— 2 D 
3 -^sso 
+ 
3 A 2 ) 
An = 
2 7) 
3 -^530 
+ 
3 A j > 
B530, 
A 2 1 = 
_ 1 T) 
3 ^sso 
- 
iV A 2 ) 
£>440 = 
_ 16 T) 
15 -^530 
- 
33 A 2 ) 
£>431 = 
1 T) 
11-^530 
- 
1 7? 2 
30 -°8 ) 
£>422 = 
4 D 
T5 -^530 
+ 
2 7? 2 
13 -°8 » 
£>332 = 
1 
sh 
b 
i 
- 
1 7? 2 
T5 -°8 > 
AoO — 0, 
-AlO) 
£>720 = 
D 
81« > 
A11 = o, 
£>S30 = ^ AlO 3 -AlO) 
A2I = 2* AlO '1' 2 AlO > 
-AlO> 
-All — 2" AlO 2 -^540 ) 
A22 = 0, 
£>441 = 0, 
A32 = i £> 810 + i £> 540 ) 
£>333 = 0. 
Whatever be the value, all the tables except the three first commence thus, according 
as f is even or odd, 
£>/, 0,0 — 
A 2 > 
or A, 0,0 =0, 
11 
0 
-w, 
£>/—1,1,0) 
£>/—2,2,0 — 
— 3 A-3.3,0+3 A 2 » 
A“ 2 , 2, 0 = — A- 
£>/—2,1,1 = 
3 A-3,3,0+3 A 2 > 
£>/—2, 1,1 = 6, 
£>/—3,3,0 
but beyond this I am not acquainted with the law. 
To give some formulae for the transformation of these derivatives; we have, for 
example, 
A-1,1.0 = (12.84)^ 18. 42 UUUU = 13.42 A-. (U, U)B f _ x {U, U). 
But 13.42 = - Z&VsV* ~ + ViZ&V*, 
and WA (A U)B f . x {U, A) = A-i(№ vU)B f _ x ( V U, ZU) 
= B f _ x (A 0 A J ) B f _ 1 (A 1 A«), &c. 
1 1 
(where A °, A 1 stand for A 0 A x , &c.); or 
A-1.1,0 = - 2 (A-i (A 0 A °) A_! (A 1 A >) - A-i (A- 0 A) B f _ 1 (A 1 A•)}, 
which reduces itself to 
A-i,i,o = -2{£ / - 1 (A°A 1 )}», 
A-1,1.0 — 2 {A-1 (A» A•) A-i (A 1 A 1 ) - [A-1 (A■ 0 A 0?}, 
according as / is even or odd.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.