Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

214 
ON SOME ANALYTICAL FORMULAS, AND THEIR APPLICATION 
[32 
write & = BG -F°~, (4), 
23 = CA -G\ 
<&=AB-H\ 
fi = GH-AF, 
(fit = HF - BG, 
=FG ~CH. 
<® = a, 23, on, §, p* (5), 
w&)/ = vK' — v'£> — K’%> Zv'— Z'v (6), 
we have 
W (m 1, tw 2 , Q)lT(c03, co 4 , Q) - Tf (&>!, &) 3 , Q)fF(« 2 , co 4 , Q)= If (&)i&) 4 , &) 2 a?3, (&) ... (7); 
of which we may notice also the particular cases 
W(wi, w 2 , Q) W (g> 3 , (o 3) Q) - IT(t»i, «3, Q)F(<w 2 , 0) 3 , Q)=W(w ] w 3 , 03^3, <©) ... (8), 
W (a> u 031, Q)W(o3 2 , 03 2 , Q)-{W(o3 u 03 2 , Q)Y= W 03,03,, (S) ... (9). 
To these we may join the following formulae, for the transformation of the function W. 
Suppose 
oh = aa?i + a'y 1 + a!’z x , bx 1 + b'y 1 + b'%, ex, + c'y x + c"z x (10), 
03, = ax, + ¡x'y, + a!'z 2 , bx 2 + b'y 2 + b"z 2 , cx, + c'y, -f c"z 2 , 
then, writing g =a , b , c (11), 
g'= a', b', c', 
g" = a", b", c", 
Pi = Xi, Vi, Zi (12), 
p 2 ~ x 2 , y 2 , z 2 , 
®=V(g,g,Q), W (g r , g', Q), W(g",g",Q), W(g',g",Q), W(g",g,Q), W(g,g',Q)( 13). 
we have 
W (o)!, 03 2 , Q)=W (p x> p 2 , ©) (14). 
Similarly, writing 
V = W (Yg", Yg", <&), w (g''g, Yg, (®), W (gg\ gtf, $2) 
W (W* S’ <&)’ W (Y£_> Wj Q)> w (7Y> S’ <&)> (15), 
we have W (03^, 03 2 03 3 , @)= W (pgh, p 2 p 3 , T 1 ) (16), 
in which equations may obviously be changed into Q.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.