Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

246 
ON THE ROTATION OF A SOLID BODY ROUND A FIXED POINT. [37 
Similarly (a, Bq) — \ { ( 1 + A 2 ) (/am + w) — (Xu + ct) (A/a — v) 
+ (A,/A — V ) (llV + -sr) — ( Xv + w) ( 1 + /A 2 ) 
+ (vA + fi ) (/aw — u) — (— w + Aw) (fiv + X )} 
ie. (a, Bq) = 0, (43), 
and similarly (a, Or) = 0 ; 
whence (a, h ) = 0, and therefore (b, h) = 0, (c, h) = 0 (44); 
also (Jc, h ) = 0, (45). 
Next we have to determine (a, e), (b, e), (c, e). Here e being a function of 
u, v, w, X, /a, v, a, b, c, h, we must write 
(a, e) = {(a, e)} + (a, b) ~ + (a, c) j q + (a, h) ^, 
/ \ (/ m t de de 
ie ' (a, «)={(«, e)) + b Jc —c^. 
But e=i — 2 ; and thence {(a, e)} = —^-(a, v), 
and v is given immediately as a function of X, /a, v, u, v, w, by the equation (38). 
Hence 
(a, u)={[ ( 1 + A 2 ) {(1 + k) utb + Aot 2 } — ( Xu + -sr) [u + A (1 + k) ot} 
+ (A/a — v ) {(1 + k) wit + /aot 2 } — ( Xv + w) [v + /a (1 +• k) ct} 
+ (yX + /a) {(1 + k) wct + V'st' 2 )} — (— v + Xw) {w + v (1 + k) ct}] 
= i {(1 + «) uru — A (1 + k) tx 2 + Xk — X (u 2 + v 1 + w 2 ) — uw] 
= [kuvt — Xrx 2 — A (u 2 + v 2 + w 2 )} 
= Ikuvt-— =i(n M - —) {by (37) and (33)}, 
K \ K> J 
whence 
The terms 
= ^ (bOr — cBq) 
{(a, e)} = -y (bCr-cBq), 
/ \ I.-, sy T1N1 
(a, e) =- v (bCr-cBq)+bj c -c^. 
b^-c^ are evidently of the form F(v) — F(v 0 ). 
(46); 
If therefore we suppose v = v 0 , we have 
(a, e) = - ^ (bGVo - cBq 0 ) 
V o 
(47).
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.