250 ON THE ROTATION OF A SOLID BODY ROUND A FIXED POINT. [37
Again, ( h, 8) = 2p {Ap, 8) + 2q (Bq, 8) + 2r {Gr, 8),
{Ap, 8) = {Ap, 8') + {Ap, 8"),
(Ap,B') = ^(Ap, «v) + (Ap,
= — (Ap, tew),
KV
{Ap, /cut) = \ { ( 1 + X 2 ) {kU + 2Xht) — {Xu + ot) kX
+ {Xfi + v) {kv + 2/u,'scr) — {Xv — tv) k^
+ (vX + [JB ) (KW + 2y-57 ) — { v + Xtv) kv }
= ^ k (u + Act) = ^ k (a + Ap) (55);
therefore (Ap, S’) = ^(a, + Ap) (56),
(Ap, S") = -k h ^~-(Ap, v) + &e.
P h ^~- (bGr - cBq) + Fv- Fv„
(Ap, B) = L ( a _ Ap — h^^ (hCr — cBq)} + Fv - Fv
and similarly for {Bq, 8), {Gr, 8). Substituting, and neglecting the terms which vanish
for v = v 0 ,
(h, 8) + v) ,
i.e. (h, 8) = 0 (57).
Lastly, to find (e, 8),
<«. 8) = {(<r, 8)) +(a, 8)^ + (b, 8)^ + (c, 8)^,
where, in {(e, 8)}, the differentiations upon e are supposed not to affect the constants
a, b, c. Neglecting the terms which vanish for v = v 0 ,
{e, 8) ={(e, 8)},
{(e, 8)} = {(e, 801 +{(e, 8")},
{(«, «0} = [{(«. 8')}] + fe «'))];
where, in [{(e, S')}], the differentiations upon e and 8 do not affect the constants.
{(«, «")}-[{(«, «")}] +(*> a )^ + &c -
{(«, «")}-[{(«. «"))]•
i.e.