Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

250 ON THE ROTATION OF A SOLID BODY ROUND A FIXED POINT. [37 
Again, ( h, 8) = 2p {Ap, 8) + 2q (Bq, 8) + 2r {Gr, 8), 
{Ap, 8) = {Ap, 8') + {Ap, 8"), 
(Ap,B') = ^(Ap, «v) + (Ap, 
= — (Ap, tew), 
KV 
{Ap, /cut) = \ { ( 1 + X 2 ) {kU + 2Xht) — {Xu + ot) kX 
+ {Xfi + v) {kv + 2/u,'scr) — {Xv — tv) k^ 
+ (vX + [JB ) (KW + 2y-57 ) — { v + Xtv) kv } 
= ^ k (u + Act) = ^ k (a + Ap) (55); 
therefore (Ap, S’) = ^(a, + Ap) (56), 
(Ap, S") = -k h ^~-(Ap, v) + &e. 
P h ^~- (bGr - cBq) + Fv- Fv„ 
(Ap, B) = L ( a _ Ap — h^^ (hCr — cBq)} + Fv - Fv 
and similarly for {Bq, 8), {Gr, 8). Substituting, and neglecting the terms which vanish 
for v = v 0 , 
(h, 8) + v) , 
i.e. (h, 8) = 0 (57). 
Lastly, to find (e, 8), 
<«. 8) = {(<r, 8)) +(a, 8)^ + (b, 8)^ + (c, 8)^, 
where, in {(e, 8)}, the differentiations upon e are supposed not to affect the constants 
a, b, c. Neglecting the terms which vanish for v = v 0 , 
{e, 8) ={(e, 8)}, 
{(e, 8)} = {(e, 801 +{(e, 8")}, 
{(«, «0} = [{(«. 8')}] + fe «'))]; 
where, in [{(e, S')}], the differentiations upon e and 8 do not affect the constants. 
{(«, «")}-[{(«, «")}] +(*> a )^ + &c - 
{(«, «")}-[{(«. «"))]• 
i.e.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.