252 ON THE ROTATION OF A SOLID BODY ROUND A FIXED POINT.
[37
and therefore
da dF . dV 1 .. „ „ . dF k , . /i + ^o/i T1 m dV
di~~ C db + h ~dc~V 0 ( ' hCr °~ cBq °Ì ~(te + 2v 0 ^ + Ap ° ~ ~V7~ (b Cr ° ~ cBq °tì dS ’
db dV dV 1 , . n N dF k ,, „ h 4- i> 0 , . „ dV
~ y- ( c 4Po - &Cr 0 ) + 2do l b + Bq 0 (cAp 0 - aCV 0 )} ^ ,
dt a dc C da
dS
dc , dF dF 1 / „ , . x dF k , ~ /& + <£»„, T > 1 y m dF
_ _b ^- + a ^ (a5? 0 - b^ 0 ) ^ ^ {c + CV 0 - —(a% - b ^o)} ¿g-,
dt
dh
= — 2 — ,
dt de ’
de
dF
dF
dF
^ = vT1 ( hGr o ~ cBr lo) fa + (cAp 0 - aBq 0 ) + (aBq 0 - bAp 0 ) ^-¡- + 2^
di V
dS _ A;
di 2t/ 0
db
dc
dF & dF
d^ V n dS
{a + 4p 0 - ° (bC'n - oB? 0 )} ^
+ {b + - ^—° (cAp 0 —a(7r 0 )} ^
+ {c + Gr 0 - ^ (a% 0 - b4j%)} ^
+
k_ dV
V u de ’
(62),
to which we may join
dk dV
dt dS '
.(63).
We have thus the complete system of formulae.