[2
2]
SYMBOLICAL EXPRESSION.
7
Now U representing any homogeneous function of the order 2s, it is easily seen that
A ? = 7 + 2i(2i+2_4s_n) ^ ;
and repeating continually the operation A, observing that A U, A 2 £7, &c. are of the
orders 2 (s — 1), 2(s — 2), &c. we at length arrive at
A«.-? = A* U.
P l P
+ | 2i (2i + 2q - 4s - n) A« -1 U. -Jpj
+ q( j~ 2 V) 2 i (2 i + 2) (2 i + 2g - 4s - n) (2 % + 2q - 4s - n - 2) A«“ 2 U.~- a
this is
>r the
+ 2i (2i + 2) ... (2i + 2q) (2i + 2q — 4s - n) ... (2i + 2 — 4s — u) U. -j.
i+q '
Changing i into s + i + i', we have an equation which we may represent by
. U A A* U , . A?" 1 U . U
A q — A l. l A -4-9/1 •/ ——
^ pS+i+i’ Xl 9> 1 pS+i+i’ ' 9» ? pS+i+i'+i ~ 9’ pS+i+i'+q ***
where in general
r a - g (g — 1 ) ••• (g-y + 1)
1 . 2 ... r
x (2s + 2i + 2i v ) (2s + 2% + 2» + 2) ... (2s + 2% + 2i + 2r-2)
x (2i + 2t' + 2q - 2s - n) ... (2i + 2% +2q-2s-n-2r + 2).
Now the value of S, written at full length, is
ZsP s+1 (a.
(«)»
(~l) s f
1.2 ...s
A s -^- — - Æ A s_1 -
s pS+i J pZ+l+l
+ Çs-i P*+ l ~ l ( ««A
+ &c.
17 s-1
->s+l
&A S
IT
+...
and substituting for the several terms of this expansion the values given by the
equation (a), we have
S=, 4~ 1 -'- (kA'U+i,-A-'U +k,-, u)
1.2 s V p P '
where in general
fc x — a s (*A, o £s + X 1 -A s —i, o Çs—i • + -d. s _ x , 0 Ç g —x)
— fis ^ X-1 -d«_i, i £s • • • + “ 1 ~ l £s-x+i)
+ A (8(8-1)... (S-X + 1) \
± A s 1 V~ 2 ^ X<ssj )
\ s being the (x + l) th of the series a s ,fi s ...