44]
CONNECTED WITH THE THEORY OF ATTRACTIONS.
287
The only practicable case is that of q' = — q, for which
U =
Tr^ n I 1 (4-n)
s i n q l
F (%n + q) F (\n — q)J 0 (v‘ 2 s 2 +js + u 2 )i n
Consider the more general expression
.(8).
0
’rr* *(**+* + *
ds
•(9);
by writing
2 u*Js = \/(s' + 4<uv) 4 \/s',
the upper sign from s = co to s = |, and the lower one from s = ~ to 5 = 0, it is easy to
derive
0 = (2v) 2q
{C(s + 4mv) + \/s} 23 + {\/(s + 4uv) — V«} -23
\/s \/(s 4- 4uv)
Now, by a formula which will presently be demonstrated,
l
2\]it
(f> (s + j + 2uv) ds (10).
W( s + + Vs]~ 23 + + 4uv) - \/s\-- q _
\/s V(s 4- 4uv) 6 S
6 q \ s i q (s + 4tuv) i q e 9s ds (11)5
whence
f°° {\/(s + 4uv) + Vs} -23 + {V(s + 4uv) — Vs} -23 ^ 7
Jo y/sV(s + 4uv) * s - ds
2 \Jtt
s~i~ q (s 4
ds
Fs . ds (12).
re*-?);«
Thus, by merely changing the function,
2234-1^2?^. r® / ¿7\-3
0 = T(f - r/)" J 0 S ~^ 9 ( S + * uv )~ l ~ q { ~ ds) $ ( s + j + 2uv ) ds (13);
and hence in the particular case in question
2 2 ?+l tfq TfJ (n+l) r®
^ = r(y-g)'r(pTg) J o S ~ } ~ q ^ + ( 5 +i + 2uv)~i n+q ds (14),
by means of the formula
d\~ q , . T(iw- 9)
(-*")’ < s+ “>■*” - (s +
But as there may be some doubt about this formula, which is not exactly equivalent
either to Liouville’s or Peacock’s expression for the general differential coefficient of a