44]
CONNECTED WITH THE THEORY OF ATTRACTIONS.
289
Note.—One of the intermediate formulae of Mr Boole [in the Memoir referred to]
may be written as follows:
S = - f da f dvv q cos [(a — a) v + \ qir] 6a,
7T J o Jo
or what comes to the same thing, putting i= -1, and rejecting the impossible part
of the integral,
l. e.
8 = - el*
7T
S = I I(pa da,
J 0
Now (a—a) being positive,
r i r°°
a da dv v q e- v (a_tr) (pi,
Jo Jo
j = _ e h q in dvv q e iv (<*-*).
7r ! n
I = — e^ qvri r (q + 1) e^ {q+1)ni (a — a)~ q ~ l ;
i.e
/ = - e (?+ *)« r^ + l) (a-a)- q -\
or, retaining the real part only,
/ = — — sin qir T (q + 1) (a — cr) - ? -1
i.e.
1 T(-q) (a ^ q K
But (a — a) being negative,
I = — e^ qni r (q +1) e~$ iq+1)7ri (a — a)~ q ~ 1 ;
l. e.
/= ^ e~i ni F(q + l)(a- a)~ q ~\
or, retaining the real part only, 1 = 0.
Hence
8
or putting
= rF7)
a = a +1 (1 — a), or a — a = t (1 — a),
8 = f 0 l ~ q ~ l + <*)] dt ;
the expression in the text. Mr Boole’s final value is
8= -
d\ q
da
which, though simpler, appears to me to be in some respects less convenient,
c.
37