Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

291 
45] ON THE THEORY OF ELLIPTIC FUNCTIONS, 
or writing — u for u and subtracting, yjr^u being an even function, 
2Au = iri — (iK' — u) + k 2 ^ // (iK' + u), 
or putting u = K, 
2AK = iri — (iK 7 — K) + lc 2 'yjr // (iK' + K). 
Now sn 2 (u + K) — sn 2 (u — K) = 0, 
and therefore \Jr / (u + K) — ■\fr / ( u — K) = 2 , 
// ( w + #) - ir„ ( w -K) = 2u ; 
or O'iT + if)~ ^ (iZ 7 - K) = 2iK'±K. 
Also i? (u) = u — 
or 
E = K-k^K, i.e. = 
Hence 
¿-urii-£)+*, 
log sn xi = kFJr lf u - kFf-,, (u + iK’) + uiK’ 0 - ^ + B 
= ***„« - k^„ (u + iK') + i [(« + iKy - vF] (l - |) + 
i.e. 
log sn m = log © (u + iK') — log ©w + + B', 
or, changing the constant, 
sn u 
_ C( M-®(u + iK') 
©m 
Now, to determine (7, write u — iK’ for u; this gives 
1 _ r( M {u - iK ' ] ©w 
k sn u © (u - iK) ‘ 
and again changing n into — u, 
— sn u 
_ Cc S®(u-iK') : 
&u 
whence, multiplying these last two equations, 
_ TtK' 
k 
+ B\ 
37—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.