Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

45] 
ON THE THEORY OF ELLIPTIC FUNCTIONS. 
299 
The case corresponding to the denominator in the multiplication of elliptic func 
tions is that of G 0 — 1, Gi = 0. It is easy to form the table'— 
G 0 = 1, 
G,= 0, 
C 2 = — 2 n (ft — 1), 
C s = 8 n (ft — 1) (n — 4) a, 
(7 4 = — 4 n (n — 1) (n — 4) [n + 75] 
— 32n (w — 1) (w — 4) (n — 9) a 2 , 
(7 5 = 96 n (n — 1) (n — 4) (n — 9) [ft,+ 44] a 
+ 128 n (n — 1) (ft, — 4) (ft — 9) (ft, — 16) a 3 , 
<7 6 = - 24 n (n -1) (n - 4) (ft - 9) [17n 2 + 403w + 9000] 
— 960 n (n — 1) (n — 4) (ft, — 9) (ft — 16) [ft + 41] a 2 
— 512 n (n — 1) (ft — 4) (ft, — 9) (ft — 16) (ft — 25) a 4 , 
G 7 = + 96 ft (ft — 1) (ft — 4) (ft — 9) (ft — 16) [79ft 2 + 2825ft + 36180] a 
+ 7168 % (ft — 1) (ft — 4) (ft — 9) (w — 16) (ft — 25) [ft + 42] a 3 
+ 2048 ft (ft — 1) (ft — 4) (ft — 9) (ft — 16) (ft — 25) (n — 36) a 5 , 
G % = — 48 ft (ft — 1) (ft — 4) (ft - 9) [283ft 4 - 26978ft 3 + 277827ft 2 - 5491932ft + 127764000] 
— 3840 ft (w - 1) (ft - 4) (ft - 9) (ft - 16) (n - 25) [23ft 2 + 1069ft + 23436] a 2 
— 15360 ft (ft — 1) (ft - 4) (ft - 9) (ft — 16) (ft — 25) (ft — 36) [3ft + 133] a 4 
— 8192 ft (ft — 1) {n — 4) (ft — 9) (ft —16) (ft — 25) (ft — 36) (ft — 49) a 6 , 
&c. 
in which of course the coefficient of the highest power of n, in the successive co 
efficients G r , is the value of C r obtained from the equation (8). With regard to the 
law of these coefficients I have found that 
G r = (-) r+1 2 2r ~ 3 ft (ft - l 2 ) ... [ft - (r - l) 2 } 6V a»- 2 
+ 2 2r_G ?i (ft — l 2 ) ... [ft — (r — 2) 2 } G r ~ a r-4 
+ 2 2r-9 ft (ft — l 2 ) ... {ft- — (r — 3) 2 ] C7 3 a’’ -6 
+ &c. 
(where however the next term does not contain, as would at first sight be supposed, 
the factor ft (ft — l 2 ) ... {w —(r —4) 2 }). And then 
Cr 1 = 1, 
cy = (r - 3) [ft (2r - 7) + (r -1) (8r - 7)], 
Cy=|(r — 4)0—5) [ ft 2 (4r 2 — 24r + 51) 
+ ft (32r 3 — 220r 2 + 412r — 255) 
+ 2 (r — 1) (?" — 2) (32r 2 — 88?' + 51)]. 
38—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.