Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

62] 
383 
62. 
ON AN INTEGRAL TRANSFORMATION. 
[From the Cavibridge and Dublin Mathematical Journal, vol. ill. (1848), pp. 286—287.] 
The following transformation, given for elliptic functions by Gudermann (Crelle, 
t. xxiii. [1842], p. 330) is useful for some other integrals. 
dbc — dba — dca + abc — (be — ad) z 
(be — ad) + (d—b — c +a) z ’ 
K = (be — ad) + (d — b — c + a) z, 
we have, supposing a <b < c < d, so that (b — a), (c — a), {d — b), (d — c) are positive, 
K (y — a) =(b — a) (c — a) (d — z), 
K (y - b) = (b - a) (d - b) (c - z), 
K (y - c) = {c - a) {d - c) (b - z), 
K (y — d) = (d — b) (d— c) (a — z), 
K 2 dy = — (6 — a) (c — a) (d — b) (d — c) dz. 
In particular, if a + ¡3 + <y + 8 = — 2, 
(y — a) a (y — by (y — c)y (y — d) 8 dy = — M(z — a) s (z — by (z — c) p (z — d) a dz, 
where M=(b — a) a+fi+1 (c — a) a+ y +1 (d — by +s+1 (d — c)* +5+1 . 
Thus, if a = /3 = 7 = S = — L 
{- (V ~a)(y~ 0 (V -c){y- djy ~ {-(z-a) (z -b)(z- c) (z - d)}*' 
In any case when y = a, y = b, the corresponding values of £ are z = d, z — c\ the 
last formula becomes by this means 
f b dy _ C d dy 
L {- (y ~ a) (y ~ 8) (y -c)(y- d)^ ~J c {-(z-a)(z-b)(z- c) (z - d)]* ‘ 
If 
then, putting
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.