4] IN SERIES OF MULTIPLE SINES AND COSINES.
21
where T (X x , X 2 ...) being expansible in the form
I (X x , X 2 ...) = X_ 00 ... Ag u S2 V'V* ••• \A, lt s2 ... = A_ Su _g t ] (15),
F (Xj, X 2 ...) =2 0 £ 0 ••• 2^-4«,, Xi^X/a..., (16),
N being the number of exponents which vanish.
The equations (13) and (14) may also be written in the forms
y{ e wV(-D} =£_” cos rm 2 cos ?'%X ———^ ^ 2 e (^ + ^ (17^
Jl — e 2
^ X
yjfWiVl-iq gi/aVl-D . #< J
= n (cos rm) n |2 cos r x \ J ' 5 '' X + X ~‘ )i }/(V, (18).
^
As examples of these formulae, we may assume
X {e w ^ (_1) } = m = u — esin u (19).
Hence, putting
+ a. (20),
and observing the equation
J — 1 [e w * ,(-1) } = 1 — ecos u (21),
the equation (17) becomes
/(e „vi-.,) = 24 cosrmA.lLzii^+pE A (22).
V ✓
Thus, if e-v = cos- 1 - C0S ^ ~- (23),
1 — e cos u
assuming / {e V( *} = ^ _ cQg — (24),
cos (0 — ot) = 2_ * y--r=^ cos m [1 — (X + X -1 )} {£ (X + X -1 ) — A r .. .(25),
the term corresponding to r = 0 being
— > - 1 = {2X — 2e — e (X 2 +1) + 2e 2 X], = -e (26).
2 Jl - e 21
Again, assuming
f ( 6 uV(-D| = ¿0. = ~ e * (27),
^ ^ 1 dm (1 — ecosw) 2