Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

23 
4] IN SERIES OF MUPTIPLE SINES AND COSINES, 
(43). 
substituting in 
cos k{0- 0') = cos k (tz- tz') {cos k (0 - tz) cos Jc (0' - &') + sin k (0 - tz) sin k(0' - tz')} 
- sin k (tz - tz') {sin k (6 - tz) cos k (0' - tz') - sin k (0' - tz') cos k (0 - tz)}, 
and reducing the whole to multiple cosines, the final result takes the very simple form 
cos k (0 - 0') = cos [r'm' -rm + k(iz- tz')} A r AV cos kL cos kL' (l - (u - 7 V) .. .(38). 
kr) \ kr‘ 
Again, formula3 analogous to (14), (18), may be deduced from the equation 
r (m 1( m 2 ...) 
^ ^ x H" dm x f 2 " dm 2 
'-«2-w* cos(r 1 m 1 +r 2 m 2 ...)J J ... c°s (r^ + r 2 m 2 ...) T (m 1} m 2 ...) 
+ sin(nwij + r.,?n 2 ...) J ^ J ... sin (nmj + r 2 m 2 ...) F (m 1} m 2 ...) (39), 
which holds from w x = 0 to = 2tt, &c., but in many cases universally. In this case, 
writing for T (m u ra 2 ...) the function 
n 
\/l — e 2 — e sin u J — 1 
/{ e «iV<—i>, 6 « 2 V(-d ...j ..,(40). 
- 1 e wV 1-11 {e wV <~i) j 1 — e cos u 
and observing 
Jl — e 2 — e sin u J - 1 1 + Xe -M * r(-1) , . ,— . 
1 — e cos w = 1 -x e -"V[-.i = 1 + 2S , ( cos l an ««] V (41), 
an exactly similar analysis, (except that in the expansion 
r^, x,..)=2_:2_:...a Si>S2 ...va/ i ..., 
the supposition is not made that A Sii Si ... = -4_ 8li _ Sa ...), leads to the result 
J 1 — e 2 — e sin u J — 1 ) 
y{f M i^< g w »V(—i),, , j pj 
J — 1 e MV(_1) % / {fc MV(_1) } (1 — e cosw)) 
^ 00 00 
** - 00 “ - 00 • • • 
cos (rA + r. 2 m 2 ...) 2 n cos (r^Xj + r 2 y 2 X. 2 ...)/(V, X 2 ...) 
+ sin (rpiij + r 2 w 2 ...) 2 n sin + r 2 % 2 X 2 ...) /(Xj, X 2 ...)... (42), 
(n) being the number of variables u 1} u 2 .... Hence also/{e MlV(-1) , e M * V( '" 1) ...} 
-- cos (« + ...) cos (r^X, + ...) n ■))| /(Xl , X,...) 
'C* 00^ 00 
- 00^— 00 •* 
i +sin (r,m, + ...) sin (*»X. + ...) n ))[ /(Xl , X,,.)
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.