TRANSFORMATION OF TWO HOMOGENEOUS FUNCTIONS, &C.
429
74]
provided that we have
' aj = a«- + ba' 2 4- cot! 1 - + 2fa!a" + 2ga"a 4- 2hota' ,
b, = a/3 2 + b/3'- + c/3" 2 + 2f/3'/3" + 2g/3"/3 + 2h/3/3',
Cj = ay 2 + by' 2 4- C7" 2 + 2fy'y // + 2gy"y + 2hyy / ,
f> = a/3y4- b/3'y' + c/3V + f (/3'y" + /3V) 4- g (/3"y + /87") + h (#/ + /3'y),
gj = aya 4- by'a' + cy"a" + f (y'a" + y"a') + g (y''« + y 2") 4- h (yen' + y' a),
, hj = aa/3 4- ba'/3' + ca"/3" + f (a'/3" + «"/3') + g (a"/3 + a/3") + h (a/3' + a'/3).
Representing for a moment the equations between the pairs of functions of the
second order by
u = u 1 , U=Uy, v = v lt
we have, whatever be the value of A,
Xu -f- TJ 4- v = XUy 4- Ui 4- Vi.
Hence, if
« , £ , y
o', /3', 7'
/3", y"
= n
Acq + + aj, Xhy + H 1 + h x , Xg x + Gy 4~ gi
A hj + Hy + h 1} A by 4~ Fy + b 1; Afj + Fy 4- f x
tyfi + G x 4- gi, A/i + Fy 4- f x , ACy + (72 + 0!
Hence, since a, b, c, f, g, h, are arbitrary,
= n; then
An A -f- a, A h 4~ H q- h, A// 4- (x4~g
Ah 4~ H 4~ h, Ab 4* F 4- b, 4" F4- f
\g + G + g, Xf + F+î, Xc+C+c
X(iy 4- Ay, Xhy 4~ Hy, Ag x 4- Gy
= ll 2
An 4“ A,
X h 4- H,
Xg 4~ G
Xhy 4~ Hy, Xby 4- Fy , X J'y 4~ Fy
X h 4- H,
X b 4* F,
Xf + F
Xgy 4- Gy, Xfy 4- Fy, ACj 4- Cy
Xg 4- G,
Xf 4- F,
X c + C
which determine the relations which must subsist between the coefficients of the
functions of the second order. We derive
a 1}
hy,
9i
= №
a,
h,
9
hy,
by,
fi
h,
b,
f
9i>
A>
Cy
9>
/,
c
and by comparing the coefficients of a, &c., if we write for shortness,
» =
. , Xb + F, Xf+F
. , Xf + F, Ac 4- C
&c., then