Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

TRANSFORMATION OF TWO HOMOGENEOUS FUNCTIONS, &C. 
429 
74] 
provided that we have 
' aj = a«- + ba' 2 4- cot! 1 - + 2fa!a" + 2ga"a 4- 2hota' , 
b, = a/3 2 + b/3'- + c/3" 2 + 2f/3'/3" + 2g/3"/3 + 2h/3/3', 
Cj = ay 2 + by' 2 4- C7" 2 + 2fy'y // + 2gy"y + 2hyy / , 
f> = a/3y4- b/3'y' + c/3V + f (/3'y" + /3V) 4- g (/3"y + /87") + h (#/ + /3'y), 
gj = aya 4- by'a' + cy"a" + f (y'a" + y"a') + g (y''« + y 2") 4- h (yen' + y' a), 
, hj = aa/3 4- ba'/3' + ca"/3" + f (a'/3" + «"/3') + g (a"/3 + a/3") + h (a/3' + a'/3). 
Representing for a moment the equations between the pairs of functions of the 
second order by 
u = u 1 , U=Uy, v = v lt 
we have, whatever be the value of A, 
Xu -f- TJ 4- v = XUy 4- Ui 4- Vi. 
Hence, if 
« , £ , y 
o', /3', 7' 
/3", y" 
= n 
Acq + + aj, Xhy + H 1 + h x , Xg x + Gy 4~ gi 
A hj + Hy + h 1} A by 4~ Fy + b 1; Afj + Fy 4- f x 
tyfi + G x 4- gi, A/i + Fy 4- f x , ACy + (72 + 0! 
Hence, since a, b, c, f, g, h, are arbitrary, 
= n; then 
An A -f- a, A h 4~ H q- h, A// 4- (x4~g 
Ah 4~ H 4~ h, Ab 4* F 4- b, 4" F4- f 
\g + G + g, Xf + F+î, Xc+C+c 
X(iy 4- Ay, Xhy 4~ Hy, Ag x 4- Gy 
= ll 2 
An 4“ A, 
X h 4- H, 
Xg 4~ G 
Xhy 4~ Hy, Xby 4- Fy , X J'y 4~ Fy 
X h 4- H, 
X b 4* F, 
Xf + F 
Xgy 4- Gy, Xfy 4- Fy, ACj 4- Cy 
Xg 4- G, 
Xf 4- F, 
X c + C 
which determine the relations which must subsist between the coefficients of the 
functions of the second order. We derive 
a 1} 
hy, 
9i 
= № 
a, 
h, 
9 
hy, 
by, 
fi 
h, 
b, 
f 
9i> 
A> 
Cy 
9> 
/, 
c 
and by comparing the coefficients of a, &c., if we write for shortness, 
» = 
. , Xb + F, Xf+F 
. , Xf + F, Ac 4- C 
&c., then
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.