464 NOTE ON THE MOTION OF ROTATION OF A SOLID OF REVOLUTION.
Substituting these values,
a = — MA sin i, b = MA cos i, c = — A (n — v),
2v = A 2 M 2 (1 + cos (6 +1)} = 2M [2 A 2 cos 2 \ (6 + i);
and substituting in the equations (14) the values of X, ¡jl, v reduce themselves to
\X =
MA cos \ (6 +1)
1
^ MA coa$(0 + %)
v = tan \ (0 + i);
^ tan ^¡r sin \ (0 — i) — A (n — v) cos \ (Q — i)\,
[k tan \fr cos \ (6 — i) + A (n — v) sin £ {6 — f)},
kt
where, recapitulating, 6 = vt + y, 2ifr = -j 4-
[78
I may notice, in connexion with the problem of rotation, a memoir, “ Specimen
Inaugurale de motu gyratorio corporis rigidi &c.,” by A. S. Rueb (Utrecht, 1834), which
contains some very interesting developments of the ordinary solution of the problem,
by means of the theory of elliptic functions.