512
ON THE ATTRACTION OF ELLIPSOIDS (jACOBl’s METHOD).
[89
pQ forme avec deux des axes du second cône ; ces deux axes sont les tangents situés
respectivement dans les sections de plus grande et de moindre courbure de chaque
ellipsoïde, le troisième axe étant la normale à l’ellipsoïde.’ Tout cela semble difficile
à établir par la synthèse.”
The object of this paper is to develope the above method of finding the attraction
of an ellipsoid.
Consider an exterior ellipsoid, the squared semiaxes of which are f+ u, g + u, h + u ;
and an interior ellipsoid, the squared semiaxes of which are f+u, g + u, h + u. Let
a, p, q be the elliptic coordinates of a point P on the exterior ellipsoid, the elliptic
coordinates of the corresponding point P on the interior ellipsoid will be u, p, q, and
if a, h, c and a, b, c represent the ordinary coordinates of these points (the principal
axes being the axes of coordinates), we have
a 2 =
6 2 =
c- =
(f+ u ) (f+q) (f+r)
if-9) (f~ h )
(.9 + u ) (9 + g) (9 + r)
(9 - h ) (9 ~f)
(h + u) (h + q) (h + r)
(h-g)(h-f)
= (f+u) (f+q) (f+r)
(f~9)(f~h)
№-(9 + û) (g + q){g + r )
(9 - h ) (9 ~f)
—2 _ (■h + u) (h + q)(h + r)
(h~f) (h-g)
I form the systems of equations
2 _ O+/) (u + g)(u + h)
(u — q)(u — r)
h 2 = (g +/) (9 + 9) (g + Æ )
(q -r){q- u)
r 2^( r +f) ( r + 9) (r+h)
(r — u)(r — q)
d 2 = (T+/K u +9)Jp+ h)
(ü — q) (ü — r)
12 = (g +/) (g + 9) (9 + h)
(g ~ r )(q- ü)
?i a = ( r +/) 0 + 9) (r + h)
(r — u) (v — q)
a x a
'f+u’
/3
af
9 + u>
<s>
1 +
-si
II
b x a
f+ g ’
/3'
bj>
~ g + q’
/ ÔjC
7 +
c x a
'f+r'
/3"
cj)
~ g + r’
7 A + r’
a+i
f+u’
35
af>
~ 9 + u’
oqc
7 A + à ’
'f+q*
bf>
~ g + q’
“/ \c
7 = A + ?’
C+JL
f+r ’
r
cf>
~ g + r’
~n C-fi
7 h + r‘