514
ON THE ATTRACTION OF ELLIPSOIDS (jACOBl’s METHOD).
[89
and the corresponding ones
a 2 b~ c 2 u — u
f +u g + u h + u a 2
X a Yb Z c u — u / Xja x FA Z& \
f+u g + u h + u a* \u — u u — q u — r) '
t X a Yb Zc y ^u — u / X 2 F 2 Z 2 \
\f+u g + u h + u) ' ad \f+u g + u h + u)
_ u — u / Xd + Fd + AM _ Xd
ad \a — u u — q u — r) ad
The coordinates of the point Q are obviously a + pX, b + pY, c + pZ (where p = PQ);
substituting these values in the equation of the interior ellipsoid, we obtain
/X 2 F 2 Z 2 \ ( Xa Yb Zc \ ( a 2 b 2 c 2 \ _
^ V f + u+g + u^ h + u) f+ u + g + u + h + u) + \ f + u g + u + h + u )
reducing the coefficients of this equation by the formulae first given, and omitting a
factor M , we obtain
«1
f odX 2 / XjCh YJh Zfi,
\(u — u) 2 \u-u + u 1 -q^u-r.
+ —
p'-+2p(+^+ Y -^-+
' ' \u — u u — q u — rj
that is,
adX]
(ü — u)
2 P'
a.
+
F161 , A<á
+
P =
.u —u u — q u — r.
1
x+h Xjttj ^ Y+Lx ^ ZxCx
ü — u ü — q u — r
-1 ,
which is easily transformed into
P
u — u
iX] — OjXj + (/ ^1 A (,/+ ' u ) ^1 ^ i (J + u) CxZx — ( f + u) CxZx
f+q f+r
and this form remaining unaltered when u and u are interchanged, it follows that if
PQ — P) then p — p, which is a known theorem. The value of p or p may however be
expressed in a yet simpler form ; for, considering the expression
X
X
flfiXi b] 11 CxZx
+ r
_ ^ f &iXx CxZx
V(/+w) V(/+ u) \J(f + ü) \f +U~ r f +q~ r f+ rj V(/+ u) {/+ii f+q J+r
- 1
u - u W( f+ u) V(/+ u)
dxXx — OjX, | (/ + (/+ ' u ) A (./ + ujcXi — (/ + uRA
/+g /+r