89] ON THE ATTRACTION OF ELLIPSOIDS (jACOBl’s METHOD). 517
with only the transformation of expressing the radical in terms of X,, viz.
Xa Yb Zc 1 v
— 1— _j_ 1— X,
_j + u g + u h + u a,
P ~ ^ X 2 ~ r- Z 2
- f 1
f+u g+u h+u
substituting these values and observing that F, and Z x are rational functions of
X, Y, and Z, but that X 1 is a radical, and that in order to extend the integration
to the whole ellipsoid, the values corresponding to the opposite signs of X 1 will require
to be added, the quantity to be integrated (omitting for the moment the exterior
constant factor) is
f / Xa Yb_ Zc \
\f + u^ g + u^ h + u)
+ 1 -(a:Y 1 + a"Z 1 )\x i dS
+J
X 2 Y 2 Z 2
/ + u g+u h+u
the integration to be extended over the spherical area S. Consider the quantity within
{ }, this is
/ Xa Yb Zc
+ —— +7-
a
+ -
q u ^( a 'X + (3 r Y+fZ)+~
\f+u g + u h + u) a-i\ \q — u
The coefficients of Y and Z vanish, in fact that of Y is
r — u
r — u.
(oTX + /3" Y + y"Z).
r — u\ cf
f+u g + u 1 a 1 {f+q)\/ \q — u) g + q ' a l {f+r)\f \r — u) g+ r
m b \a
+
q — u^ bf c,a
ab
+
bÂ
q — u
ai K/+ u) (g + u) (/+ q) (g + q) V \q ~ W (/+ r) (g + r)\f \r - u,
+
C+!
ab x
a+
+
w
+
«x 1 (f+u)(g + u) (f+q)(g + q) (f+r){g + r)
and similarly for the coefficient of Z.
= 0;
The coefficient of X is in like manner shown to be
aa f a * b ' Cx 2 ) _ cm (f-g) (f-h)
Oil(/+^) 2 {f+qf (.f+r) 2 } a x {f+u){f+q){f+r)
aa
a 2 a.
a
aa, :
a
aa.
X.
or the quantity in question is simply