6]
ON THE MOTION OF ROTATION OF A SOLID BODY.
35
Note. It may be as well to verify independently the analytical conclusion imme
diately deducible from the preceding formulæ, viz. if X, ¡x, v, be given by the differential
equations,
where k = 1 + X 2 + ¡x- + v 2 ,
particular values of X, [x,
given by the system
dX
+ v
d/x
dv
Kj) =
dt
dt
-Pdt’
dX
d/x
^ dv
Kq — —
V dt
+
dt
+ x di’
dX
dfx
dv
KV =
^dt
— \
dt
+ dt’
q, r,
are
any
functions
be
v, and l, m, n, arbitrary constants, the general integrals are
Po =1 — lX 0 — m/x 0 — nv 0 ,
P 0 \ — l + X 0 + niv 0 — 7ifX 0 ,
P 0 fi = m + fx 0 + n\ 0 — Ivo ,
P 0 v= n -f v 0 4- l/xo — mX 0 .
Assuming these equations, we deduce the equivalent system,
(1 + XX 0 + fifi 0 + vv 0 ) l = X — X 0 + v 0 fx — v/x 0)
(1 + XX 0 -f fx/x 0 + vv 0 ) m = fx — [xo + X 0 v — Xv 0 ,
(1 + XX 0 + /x/x 0 + vv 0 ) n = v — v 0 + /x 0 X — /xX 0 .
Differentiate the first of these and eliminate l, the result takes the form 0 =
(/V “t Vo) X “b vfx v fx) (v 0 X 0 fx 0 ) ( vX + [x + Xv) + (/x 0 + X 0 v 0 ) (jxX — X/x + v ) + k 0 X ,
+ {N + V-) (Xo + VofXo — V 0 'fXo) + (v — X/x) ( — V 0 \' 0 + fXo' + X 0 V 0 ') — (fX + Xv) (jxX — + Vo) — kXo,
where X', &c.
denote ~
at
&c. and Kq — 1 -f- Xo” -b [Xçf ~b Vq~.
Reducing by the differential equations in X, /x, v\ X 0 , /x 0 , v 0 , this becomes
k 0 [X' + (/x 2 -b v" ) -b \q (y - X fx ) - (jx + Xv )}
— k {X 0 + \p (/v + v 0 ~) -f \q (y 0 — X 0 /x 0 ) — |r (fx 0 + Xc 0 )| = 0 ;
or substituting for X', Xo, we have the identical equation
(/c 0 «: — kk 0 ) = 0 :
and similarly may the remaining equations be verified.