44
DEMONSTRATION OF PASCALS THEOREM.
[9
This is an immediate consequence of the equations
. . x 3) X i} X 5 , Xg
=
. . X 3 , X iy Xg, Xg
2/s, 2/4, 2/s, 2/s
2/s, 2/4, 2/s, 2/6
Z 3 , Z iy Zg , Zg
rp rp rp rp rp rp
> *A / 2> '"3) *^4) ^5?
X\t X 3 ,
2/i, 2/2, 2/s, 2/4, 2/s, 2/e
2/i, 2/2, • •
Z l> , ^4, Z 5) Z 6
¿1, ¿2, • •
Consider now the points 1, 2, 3, 4, 5, 6, the coordinates of these being respectively
x lf y 1} z x x 6 , y 6 , z 6 . I represent, for shortness, the equation to the plane passing
through the origin and the points 1, 2, which may be called the plane 12, in
the form
12 x + y 12 y + z 12, = 0 ;
consequently the symbols 12*, 12 y , 12 z denote respectively y x z 3 — y 2 z x , z x x. 2 — z 2 x u x x y 2 — x. 2 y x ,
and similarly for the planes 13, &c. If now the intersections of 12 and 45, 23 and 56,
34 and 61 lie in the same plane, we must have, by Lemma (1), the equation
12*,
45*,
23*,
56*,
12„
45j/,
23^,
56y,
12,,
45 z ,
23 z ,
56,,
23*,
56*,
34*,
61
23„
56^,
34j„
61,
23„
56„
34 z ,
61
Multiplying the two sides of this equation
by the two sides respectively of the equation
x 6 , x u
2/e, yi,
z ii
x 3 , . . . = 612.345,
2/2, • • • J
¿2 ,
x 3 ,
x iy
^5
2/3,
2/4,
2/5 !
^3 ,
¿4,
Zg
and observing the equations
x s 12* + y 6 12 y + z 6 12 z = 612,
112 = 0, &c.