11] ANALYTICAL GEOMETRY OF (n) DIMENSIONS.
59
Theorem. Consider the equations
(&' =
0,
33' =
= 0
= 0) ....
.. (12),
(&" =
0,
33" =
= 0
-B"
= 0),
(»'" =
0,
33'" =
= 0
..m"
' = 0),
&c.
l. The
equations
d Xi U ,
d x JJ
<4.tr
=
0,
da
^ ,
dxjd > •
.. 4„*7
= 0, .
.. (13),
A',
A',..
4*
A",
• • A n "
GI,
GI,..
GI
0/',
0 2 ",.
• O n "
& c.
which are the reciprocals of these systems, represent taken conjointly the reciprocal of
the system of equations (3) of the same chapter.
Let this system, which contains ti — {(n — r) + (n — r') + ...} equations, be represented by
The reciprocal system is
cc 1 x 1 + a 2 x 2 ...
Ai x 1 + ¡3 t x 2 ...
-f“ Xji —
+ An —
0
0.
(11),
£1 "b £2 ■
+
Vfx
3*
11
0.
i/", C?£C a ^
«1 , «2
... d Xn L
... CL n
= 0
(15),
t., &
... ?„
containing (n — r) + (n — r f ) + &c.... equations.
Also, by the formulae in Chap. 2,
a 1 x 1 + ... + a n x n = A/gt' + /¿/33' + ... o-/<?5' (A, /x ... a, r' in number).
Ai x x + ... + x n = A/gt' + /j, 2 'W + ... <r 2 '(§i'
£i#i ... + x n = Xe'^L + fie 33 / + ... (16),
writing 6 = 71— {(71 — r) + (71 — r') + ...}.
Also, assuming any arbitrary quantities 772 ••• Vn • <f>i, <&> •■•</>«. (the number of
sets being (r' — 8),) such that
77^1 ... +7] n x n = A+/¿0 +1 'i3 r + ... O0 +1 <5' -•
</>! ¿Tj ... + = A/ £J' + /x/ 33'+... cr/ C5'.
(1?),