12]
ON THE THEORY OF DETERMINANTS.
71
then in (45) taking g = -1 [the Numbers (56) &c. which follow are as in the original
memoir]
K{K{U+U). FU- KU. F (U + U)} = K {K (U + U). UU- KTJ. V (U+ U)} (56),
= (KUy-' .(K(U+ U)Y~ 1 . ku,
or observing the equation (50),
K{K(U+ U).FU-KU.F(U+U)} = K {K(U + U).VU - KU .V (U+U)} = 0 (57).
Hence F{(K(U+U). VU-KU.V {U + U)} = U [K (U + U). FU - KU. F (U+ U)\
are each of them the product of two determinants. But this result admits of a further
reduction: we have
F{K(U+ U). UU-KU. V (U+U)} = U{K(U + U).FU-KU.F(U + U)} (58)
= - // (.KU) n ~ 2 . {K (U+ U)) n ~ 2
apAr a'x'+ ..., fi t x + fi'x' + ... , ...
«Z + fiv + •••, , /3, -/3
«'£+/3^ + ..., a/ - a' , /3/ + fi'
substituting a / = a -f Spa, &c...., also observing that if the second line be multiplied
by x, the third by x\ ... and the sum subtracted from the first line, the value of
the determinant is not altered, and that the effect of this is simply to change
a,, a/ ... into a, a ... in the first line, and introduce into the corner place a quantity
— U, which in the expansion of the determinant is multiplied by zero: this may be
written in the form
-Jr{KU) n ~*(K(U+ U)) n ~ 2
ax + a'x' + ...,
fix + fi'x' + ..., ...
+ 0V + ...,
Spa
Sera ,
a'Z + fi' v + ...,
Spa'
Sera' ,
which may be reduced to
Jf. (KU) n ~ 2 .(K(U+ U)) n ~ 2 X
ax + a'x' + ..., fix + fi'x' + ..., ...
+ fiv + ■..
, a'^ + fi'v
P
O’ ,
a
a'
(59),
(60),
If each of these determinants are multiplied by the quantity (.KU) n ~ l , expressed
under the two forms
A, B,...
A, A',...
A', B',
>
B, B',
(61),