Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 2)

272 
A SECOND MEMOIR UPON QUANTICS. 
[141 
then identically, 
<1> 2 - V£T 2 + 4H 3 = 0. 
No. 7. 
a + 1 
b + 4 
c + 6 
(7+4 
e + 1 
vY 
No. 8. 
No. 9. 
ae + 1 
6(2-4 
c 2 +3 
± 4 
ac + 1 
ad + 2 
ae + 1 
be + 2 
6(2 + 1 
b 2 -1 
be - 2 
bd+ 2 
c 2 — 3 
cd- 2 
c 2 -1 
± 1 
± 2 
± 3 
± 2 
± 1 
No. 10. No. 11. 
ace + 1 
ad 2 — 1 
6 2 e - 1 
6cd + 2 
c 3 - 1 
( 
a 2 oi 4- 1 
abc - 3 
b 3 +2 
a 2 e + 1 
abd+ 2 
ac 2 — 9 
6 2 c + 6 
abe + 5 
acd— 15 
b 2 d + 10 
be 2 
ace 
aoJ 2 - 10 
b 2 e + 10 
bed 
c 3 
ade — 5 
bee + 15 
bd 2 - 10 
c 2 d ... 
ae 2 — 1 
bde — 2 
c 2 e + 9 
c<7 2 - 6 
be 2 - 1 
cc?e + 3 
d 3 -2 
± 3 
± 3 
± 9 
± 15 
± 10 
± 15 
± 9 
i B 
No. 12. 
a 3 e 3 
+ 
1 
a 2 bde 2 
— 
12 
a 2 c 2 e 2 
— 
18 
a 2 cd 2 e 
+ 
54 
a 2 d i 
— 
27 
ab 2 ce 2 
+ 
54 
ab 2 d 2 e 
— 
6 
abc 2 de 
— 
180 
abed 3 
+ 
108 
ac^e 
+ 
81 
ac 3 d 2 
— 
54 
Ve 2 
— 
27 
b 3 cde 
+ 
108 
b 3 d 3 
— 
64 
b 2 c 3 e 
— 
54 
b 2 c 2 d 2 
+ 
36 
bc*d 
± 442 
The tables Nos. 7, 8, 9, 10 and 11 are the irreducible covariants of a quartic. 
No. 7 is the quartic itself; No. 8 is the quadrinvariant; No. 9 is the quadricovariant, 
or Hessian; No. 10 is the cubinvariant; and No. 11 is the cubicovariant. The table 
No. 12 is the discriminant. And if we write No. 7 = U, No. 8 = I, No. 9 = H, 
No. 10 = J, No. 11 = <E>, No. 12 = V, 
then the irreducible covariants are connected by the identical equation 
JU 3 - IU 2 H + 4i7 3 + d> 2 = 0, 
and we have 
V = I s - 27 J\
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.