272
A SECOND MEMOIR UPON QUANTICS.
[141
then identically,
<1> 2 - V£T 2 + 4H 3 = 0.
No. 7.
a + 1
b + 4
c + 6
(7+4
e + 1
vY
No. 8.
No. 9.
ae + 1
6(2-4
c 2 +3
± 4
ac + 1
ad + 2
ae + 1
be + 2
6(2 + 1
b 2 -1
be - 2
bd+ 2
c 2 — 3
cd- 2
c 2 -1
± 1
± 2
± 3
± 2
± 1
No. 10. No. 11.
ace + 1
ad 2 — 1
6 2 e - 1
6cd + 2
c 3 - 1
(
a 2 oi 4- 1
abc - 3
b 3 +2
a 2 e + 1
abd+ 2
ac 2 — 9
6 2 c + 6
abe + 5
acd— 15
b 2 d + 10
be 2
ace
aoJ 2 - 10
b 2 e + 10
bed
c 3
ade — 5
bee + 15
bd 2 - 10
c 2 d ...
ae 2 — 1
bde — 2
c 2 e + 9
c<7 2 - 6
be 2 - 1
cc?e + 3
d 3 -2
± 3
± 3
± 9
± 15
± 10
± 15
± 9
i B
No. 12.
a 3 e 3
+
1
a 2 bde 2
—
12
a 2 c 2 e 2
—
18
a 2 cd 2 e
+
54
a 2 d i
—
27
ab 2 ce 2
+
54
ab 2 d 2 e
—
6
abc 2 de
—
180
abed 3
+
108
ac^e
+
81
ac 3 d 2
—
54
Ve 2
—
27
b 3 cde
+
108
b 3 d 3
—
64
b 2 c 3 e
—
54
b 2 c 2 d 2
+
36
bc*d
± 442
The tables Nos. 7, 8, 9, 10 and 11 are the irreducible covariants of a quartic.
No. 7 is the quartic itself; No. 8 is the quadrinvariant; No. 9 is the quadricovariant,
or Hessian; No. 10 is the cubinvariant; and No. 11 is the cubicovariant. The table
No. 12 is the discriminant. And if we write No. 7 = U, No. 8 = I, No. 9 = H,
No. 10 = J, No. 11 = <E>, No. 12 = V,
then the irreducible covariants are connected by the identical equation
JU 3 - IU 2 H + 4i7 3 + d> 2 = 0,
and we have
V = I s - 27 J\