Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 2)

[103 
103] 
ON CERTAIN DEFINITE INTEGRALS. 
13 
becomes infinite for 
incipal value, that is, 
>r which the quantity 
scent. 
x~ fl , we have finally 
;he latter to that of 
- x, then ‘ÿ / (x+ 7r) 
Id. Combining these 
cot x 
dx ; 
cosec x 
dx ; 
d y 1 
dx) 
In particular 
/' 
sin xdx 
= 7T, 
sin # (—)**' 1 f n 
J dx ;— I sin x 
gx 
( — 
cot X 
af- 
dx 
S’ 
/>4(; 
\dxj 
I w-i ~| r # 
cosec a; die = g** -1 J sin 
I sin gx cot xdx= tt, g even, 
J 0 
~fd 
\dx/ 
cosec x 
~( d - 
P.— 
\dx/ 
cosec x 
~(d 
P.—Ì 
\dxj 
cosec x 
dx, 
dx, g even, 
dx, g odd, 
sin gx cosec xdx = 7r, <7 odd, 
^taniedie . 0 
= 0, &c., 
the number of which might be indefinitely extended. 
The same principle applies to multiple integrals of any order: thus for double 
integrals, if y}r(x + ra, y + rb) = TJ r s yjr (x, y), then 
[ I ^y)¥y) dxdy = f f yfr (x, y) XU rtS y ¥(x + ra, y + sb). ... (B) 
J — ao J — 00 J 0 J 0 
In particular, writing w, v for a, b, and assuming yjr(x + rw, y + sv) = (±) r (±) s yjr (x, y)\ 
also 'F (x, y) = (x + iy) _ ' i , where as usual i = V — 1, 
where 
' f * ylr (x, y) dxdy (-y- 1 f w f v . , s 
(±)'(±)*1 
dxdy, ...(B') 
® (a; 4- fi/) = X 
(# + iy +rw + svi) ’ 
X extending to all positive or negative integer values of r and s. Employing the 
notation of a paper in the Cambridge Mathematical Journal, “On the Inverse Elliptic 
Functions,” t. iv. [1845], pp. 257—277, [24], we have for the different combinations 
of the ambiguous sign, 
„ / . (S {x + iy) 1 
, — , © (x + iy) = —7—-- -- = , 7——i-t , 
v <y(x-[-iy) (f)(x + iy) 
1. 
2. 
„ . . . G (x 4- %y) F (x + xy) 
+ , <d(x + iy)= 7 ;—r-^ = ~T7 \—• \ 
v 7 (x + iy 4> (x + iy) 
cosec x 
dx.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.