[103
103]
ON CERTAIN DEFINITE INTEGRALS.
13
becomes infinite for
incipal value, that is,
>r which the quantity
scent.
x~ fl , we have finally
;he latter to that of
- x, then ‘ÿ / (x+ 7r)
Id. Combining these
cot x
dx ;
cosec x
dx ;
d y 1
dx)
In particular
/'
sin xdx
= 7T,
sin # (—)**' 1 f n
J dx ;— I sin x
gx
( —
cot X
af-
dx
S’
/>4(;
\dxj
I w-i ~| r #
cosec a; die = g** -1 J sin
I sin gx cot xdx= tt, g even,
J 0
~fd
\dx/
cosec x
~( d -
P.—
\dx/
cosec x
~(d
P.—Ì
\dxj
cosec x
dx,
dx, g even,
dx, g odd,
sin gx cosec xdx = 7r, <7 odd,
^taniedie . 0
= 0, &c.,
the number of which might be indefinitely extended.
The same principle applies to multiple integrals of any order: thus for double
integrals, if y}r(x + ra, y + rb) = TJ r s yjr (x, y), then
[ I ^y)¥y) dxdy = f f yfr (x, y) XU rtS y ¥(x + ra, y + sb). ... (B)
J — ao J — 00 J 0 J 0
In particular, writing w, v for a, b, and assuming yjr(x + rw, y + sv) = (±) r (±) s yjr (x, y)\
also 'F (x, y) = (x + iy) _ ' i , where as usual i = V — 1,
where
' f * ylr (x, y) dxdy (-y- 1 f w f v . , s
(±)'(±)*1
dxdy, ...(B')
® (a; 4- fi/) = X
(# + iy +rw + svi) ’
X extending to all positive or negative integer values of r and s. Employing the
notation of a paper in the Cambridge Mathematical Journal, “On the Inverse Elliptic
Functions,” t. iv. [1845], pp. 257—277, [24], we have for the different combinations
of the ambiguous sign,
„ / . (S {x + iy) 1
, — , © (x + iy) = —7—-- -- = , 7——i-t ,
v <y(x-[-iy) (f)(x + iy)
1.
2.
„ . . . G (x 4- %y) F (x + xy)
+ , <d(x + iy)= 7 ;—r-^ = ~T7 \—• \
v 7 (x + iy 4> (x + iy)
cosec x
dx.