Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 2)

144] 
A THIRD MEMOIR UPON QUANTICS. 
331 
S(6aPU + /3QU) 
' + IT 2 +192 8 s , r ) 
+ 1287 1 S 2 , 
< + 18T*S +384 S\ 6a> ^4 
+ IT* + Q4>TS 3 , 
y 5T 2 S 2 — 64 S 5 
T(6clPU+/3QU) = 
'- 8 T 3 + 4608TS 3 , ^ 
+ 1920T 2 $ 2 + 73728 8 
+ 360T 3 £ + 384007 7 /Si 4 , 
+ 20T 4 + 8960M 3 , 6;«, /3) 6 . 
+ 840T 3 £ 2 + 7680TS S , 
+ 36™ + 384™* + 24576 &, 
+ IT 5 - 407 T3 /S' 2 + 2560TS 6 j 
R (6aPZ7 + /3QU) = [(48$, 87 7 , -96/S' 2 , - 2477?, - T 72 - 16$ 3 /3) 4 ] 3 7?. 
F(GaPU +/3QU) = ( 192 <8, 327 T ,-384 $ 2 967 7 >8 
+ ( 0 , 512 S s , 192T S' 1 , 24<T‘ 2 S 
+ (1344$ 2 , 352T8, 247' 2 —1152$ 3 , -288T8 2 
+ ( 48 7\ 0 , 288T8 , 24T 72 + 1536$ 3 , 
47’ 2 - 64/S 3 J«, /3) 4 © 17 
7 73 /3) 4 . U- 
20™ + 64$ 4 %«, /3) 4 77. 7777 
1447 7 /Si 2 \a, $Y{HU)\ 
The tables for the ternary cubic become much more simple if we suppose that 
the cubic is expressed in Hesse’s canonical form; we have then the following- 
table : 
No. 70. 
U = P + y 3 + z 3 + Qlxyz. 
S =-l+l\ 
T =1-201 3 - 81*. 
R = - (1 + 81 3 ) 3 . 
HU = I s (x 3 + y 3 + P) — (1 + 2I s ) xyz. 
SU = (1 + 8 ?) 2 (y 3 z 3 + z 3 P + x 3 y 3 ) 
+ (— 91 6 ) [P + y 3 + z 3 ) 2 
+ (— 21 — 5Z 4 — 201 7 ) (P + y 3 + z 3 ) xyz 
+ (- 151 3 - 781 3 + 121 8 ) x*y 2 z\ 
(S) y 77 = 4 (1 + 8Z 3 ) 2 (jfz 3 + z 3 P + Py 3 ) 
+ (- 1 - 4Z 3 - 4?) {P + y 3 + z 3 f 
+ (41 + 100Z 4 + 112/7) (,x 3 + y 3 + z 3 ) xyz 
+ (48? + 552? + 48?) xyz 2 . 
42—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.