149]
OF CERTAIN SYSTEMS OF TWO EQUATIONS.
463
9jk — 3af = S x 1 2 x 2 y 2 y 3 z 3 ,
9ki obg = 8 y^y2^2 z 3 x 3 ,
9ij — 3ch = 8 z 2 z 2 x 2 x 3 y 3 ,
9fi - 3bc = 8 y?y 2 z 2 zi,
9gj — 3ca = 8 z 1 2 z 2 x. 2 x s 2 ,
9hk— 3ab = 8 x?x 2 y 2 y£,
3 ( fj -f gk + hi - l 2 ) = 8 x^z^ysZs,
3(2fj - gk - hi + l 2 ) = S x<y 2 x 2 y 2 zi,
3 (2gk - hi - fj +1 2 ) = 8 y 1 z$ i zffif,
3 (2hi - fj - gk +1 2 ) = 8 Zift.z& 2 yg,
3 (6f 1 - 3ki - bg) =8 x^jgjgzg,
3(6gl — 3ij — ch) =Sy 1 z 1 z?x 3 2 ,
3 (6hl — 3jk — af) =8 ZxXxXgyg,
3 (6 il — 3fg — ck) = 8 z x Xxy 2 zg,
3 (6jl - 3gh - ai ) =8 x x y x z?x£,
3 (6kl — 3hf — bj ) =8 yxZ x x£y£,
6 (— fj — gk — hi + 41 2 ) = 8xgygzg.
As an instance of the application of the formulae, let it be required to eliminate
the variables from the three equations,
(a, b, c, f, g, h, i, j, k, l\x, y, zf = 0,
(a', b', c', f, g', h! Jx, y, zf = 0,
(a, /3, 7 \x, y, z) =0.
This may be done in two different ways; first, representing the roots of the linear
equation and the quadric equation by (x 1} y 1} Zj), (x 2 , y 2 , z 2 ), the resultant will be
(«,...$>!, y l9 Zx) 3 .(a, ...Qx a, y 2 , z 2 f,
which is equal to
a 2 xgxg + &c.,
where the symmetric functions xgxg, &c. are given by the formulae a' 3 = xgxg, &c.,
in which, since the coefficients of the quadratic equation are {a', b', c', /', g', h'),
I have written a' instead of a. Next, if the roots of the linear equation and the cubic
equation are represented by {x 2 , y 1} z x ), (x 2 , y 2 , z 2 ), (x 3 , y 3 , z 3 ), then the resultant
will be
(a', ...Jxx, yx, Zxf.{a',..^x 2 , y 2 , z 2 f{a\ ...~§x 3 , y 3 , z 3 ) 2 ,