108] CONNECTED WITH THE THEORY OF ATTRACTIONS,
it is easy to see that
37
(X 2 + v 2 )(P + u 2 ) = S 4 , (\ 2 - 6 2 ) (l 2 -f 2 ) = 8*,
and
;= eti
b 2 a _ B 2 a,
¥+P 2 “
_ v g2 /i _. 0
p + v? v > li~fi ~
Proceeding to express the single integrals in terms of the new constants, we have in
the first place k 2 — &k 2 , where
k 2 =
ai
+...;
or if we write
we have
/2 7 !
k 2 = 7 ^ L _+
P + u 2 ^-/i 2
aa, + bb, ... = ll, cos m,
211, cos ft)
Hence also % = S 4 j, where
{P + W 2 ) 2 (4 2 -/a 2 ) 2 (¿ 2 + *■) (¿> 2 -//) '
j=-,—^,^-k 2 - ^
(k 2 ~fff (¿ 2 + w 2 ) 2 ’
whence
1 1 2111 cos to
— 1 = , h ^ 7T- +
*/ /o i ..o! 1 7 o _/*o *
¿ 2 +W 2 ^8 ~/ x 2 (P + U 2 ) (l, 2 ~f 2 )
= (P + u 2 ) (l, 2 -f 2 ) № + U *
where p 2 —P + l 2 — 211, cos co, that is
p 2 = (a- a,) 2 + (b- b,) 2 + ...;
consequently dps 2 + - v 2 = 8 4 n, where n is given by
fl S 2 (p 2 + u 2 -f 2 ) g u?
11 =
(l, 2 -f 2 ) 2 (P + u 2 ) (l, 2 -f 2 ) (P + v?f
and it is clear that e will be the positive root of
0
(P 2 + V? —fl) .
■ C / 7 „ / 7 _ C
are
(h 2 ~fi 2 ) 2 (P + O (k 2 ~fi 2 ) (P + uj •
It may be noticed that, in the particular case of u — 0, the roots of this equation
(irp _ /2\ n 2_ f '2\
0, and • ■ Consequently if p 2 — f 2 and l 2 — f 2 are of opposite signs,
Vi
we have e = 0 ; but if p 2 — f[ 2 and l, 2 — fp are of the same sign, e
(P 2 -.fi 2 )(h 2 -fi 2 )
PfP