Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 2)

46 NOTE ON THE TRANSFORMATION OF A TRIGONOMETRICAL EXPRESSION. [110 
D_ 1, (a —c)(l + | 2 ), + ^ 
ft, ft+ft ft + i 
(aj-c) 2 
fVft 
O - c ) § 
fVft 
_ (a-cyf 
ftW 1 
ft, ft ft + i 
1, ft r 
- ft?? 
1, ft ft 
(a-^+^+r-ft??) 
ft ft ft 
or, replacing £, 77, £ by their values, we have identically 
1, x, {a + x)\/(c + x) 
ft V, (« + £/) V(c + y) 
1, 2, (a + ft) V(c + 2) 
(c+;ft)"(c+y)^(c+ft)^ j /a—c /cl—c ja—c ja—c ja—c / 
(a — c) 2 (V c+# v c+y + V c+£ V c+#v o+«V 
'a—c 
c+y'V c+2 
V- 
a — c 
a—c 
c+x’ 
« ! 
+ 1 
& 1 
1 a—c 
a—c 
c+y’ 
c+y 
'a—c 
a—c 
c+z' 
c+z 
and the equation 
/a — c /a — c fa —c ja — c ja — c j a — c _ q 
v c + # v c + y v c + .z v c + #v c + y V c + ^ 
is of course equivalent to the trigonometrical equation 
1-1 J + tan_1 J -£- C + tan- 1 a/ ^- C = 0, 
V c + a; V c + y V c + 2 
tan~ 
which shows the equivalence of the two equations in question.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.