46 NOTE ON THE TRANSFORMATION OF A TRIGONOMETRICAL EXPRESSION. [110
D_ 1, (a —c)(l + | 2 ), + ^
ft, ft+ft ft + i
(aj-c) 2
fVft
O - c ) §
fVft
_ (a-cyf
ftW 1
ft, ft ft + i
1, ft r
- ft??
1, ft ft
(a-^+^+r-ft??)
ft ft ft
or, replacing £, 77, £ by their values, we have identically
1, x, {a + x)\/(c + x)
ft V, (« + £/) V(c + y)
1, 2, (a + ft) V(c + 2)
(c+;ft)"(c+y)^(c+ft)^ j /a—c /cl—c ja—c ja—c ja—c /
(a — c) 2 (V c+# v c+y + V c+£ V c+#v o+«V
'a—c
c+y'V c+2
V-
a — c
a—c
c+x’
« !
+ 1
& 1
1 a—c
a—c
c+y’
c+y
'a—c
a—c
c+z'
c+z
and the equation
/a — c /a — c fa —c ja — c ja — c j a — c _ q
v c + # v c + y v c + .z v c + #v c + y V c + ^
is of course equivalent to the trigonometrical equation
1-1 J + tan_1 J -£- C + tan- 1 a/ ^- C = 0,
V c + a; V c + y V c + 2
tan~
which shows the equivalence of the two equations in question.