Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

122 ON THE DETERMINATION OF THE VALUE OF A CERTAIN DETERMINANT. [l 86 
gives rise to the terms 
( )°M XtS A x—2, S Hx—i8—2 ( X—-2, S H x _ 2g, 
(since \8~ — (it — 2s — l) 2 } H X _. 2S _. 2 = H X _. 2S ), or, what is the same thing, 
( ) 1 A i-y-] If x _2S ( yA X—-2' .S' H x —ng 
= ( ) \M X 'S— 1 A x _ 2<s _ 1 + A x—2 t s( H X —-2S> 
and moreover 
TJ X -4 contains the term (—) s A x _ i s H x _, M _ 4 , 
or, what is the same thing, (—) s A x _ i>s __ 2 IT x —is • 
Hence we must have 
A X g (A x _ 2 ' S + J\T X , ,5—1 H fl5 _2,8—3.) "4 (&’ 2) (it' 3) (/l it -f- 3) (/l it 4- 4) Ax—4's—2 = 0, 
where 
M x<s _1 = (# — 1) (ft — x + 2) + (it — 2) (w. — x + 3) — (it — 2s + l) 2 . 
This may be satisfied by assuming 
A x ,s = B X8 (ft— it + 1) (ft— it + 3)... (ft— it + 2s- 1); 
for then 
A x _ %8 = B x _ 28 (ft — it + 3)...(ft-it + 2s-l)(ft — it+2s+l), 
■Ax—2,8—1 =: B x —2,s—\(A *t H - 3) . . . (ft it + 2s — 1 ), 
(n — x 4- 3) (??• — it + 4) 4 s _ 2 (ft — it + 4) (ft — it + 3) ... (ft — it + 2s - 1), 
and consequently 
B x g ( ft - x + 1) 
— B x —2 t s (ft — x + 2s + 1) 
Bx—-2,S—1 1 
+ B x _ i8 _. 2 (.x - 2) (it - 3) (ft - it + 4) = 0; 
and if this equation be satisfied independently of n, we must have 
B x ,s B x _. 2 s (2it 3) 14—2,*—i -f- (it—2) (it — 3) B x _ i s _, 2 — 0, 
14,s - (2s + 1) 14-2,8 - {5it - 8 - (it - 2s + l) 2 } 14- 2 ,8-i + 4 (it - 2) (it - 3) 14_, M _ 2 = 0, 
and these are both satisfied by 
R _it.it — 1 ... it — 2s + 1 
*■* 2®.1.2.3...s ’ 
in fact, substituting this value and omitting the factor 
(it — 2) (it — 3)... (it — 2s + 1) 
2M.2.3...S 5
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.