159]
1
159.
ON SOME INTEGRAL TRANSFORMATIONS.
[From the Quarterly Mathematical Journal, vol. I. (1857), pp. 4—6.]
Suppose that x, a, b, c and x', a', b', c' have the same anharmonic ratios, or what
is the same thing, let these quantities satisfy the equation
1 ,
1 ,
1 ,
1
= 0;
X ,
a ,
b ,
c
x' ,
a' ,
b'
c'
xx',
aa\
by,
cc'
this equation may be represented under a variety of different forms, which are obtained
without difficulty; thus, if for shortness
K = a (b' — c') (x' — a') + b (c — a') (x' — b')+c (a' — b') (x' — c'),
then
Mx = — \bc (b’ — c ) (x' — a') + ca (c' — a,') (x' — b') + ab (a' — b') (x — c')},
K (x — a)— (c - a) (a —b) (b' — c') {x' — a'),
K(x — b)— (a — b) (b — c ) (c' — a') (x' — b'),
K(x — c)— (b — c) (c — a) {a! — b') (x' — b').
Consider x, x' as variables; then
K 2 dx = (b — c) (c — a) (a — b) (b' — c') (c' — a') {a' — b') dx';
let, d, d! be any corresponding values of x, x'; then
1 ,
1 ,
1 ,
1
= 0
a ,
b ,
c ,
d
a' ,
y,
y
d'
aa',
bb',
cc',
dd'
C. III.
1